Introduction to OpenACC Directives

Duncan Poole, NVIDIA Thomas Bradley, NVIDIA

GPUs Reaching Broader Set of Developers

Time

3 Ways to Accelerate Applications

3 Ways to Accelerate Applications

3 Ways to Accelerate Applications

GPU Accelerated Libraries "Drop-in" Acceleration for Your Applications

OpenACC Directives

Your original Fortran or C code

Familiar to OpenMP Programmers

OpenACC Open Programming Standard for Parallel Computing

"OpenACC will enable programmers to easily develop portable applications that maximize the performance and power efficiency benefits of the hybrid CPU/GPU architecture of Titan."

--Buddy Bland, Titan Project Director, Oak Ridge National Lab

"OpenACC is a technically impressive initiative brought together by members of the OpenMP Working Group on Accelerators, as well as many others. We look forward to releasing a version of this proposal in the next release of OpenMP."

--Michael Wong, CEO OpenMP Directives Board

OpenACC The Standard for GPU Directives

- Simple: Directives are the easy path to accelerate compute intensive applications
- Open: OpenACC is an open GPU directives standard, making GPU programming straightforward and portable across parallel and multi-core processors
- Powerful: GPU Directives allow complete access to the massive parallel power of a GPU

High-level

- Compiler directives to specify parallel regions in C & Fortran
 - Offload parallel regions
 - Portable across OSes, host CPUs, accelerators, and compilers
- Create high-level heterogeneous programs
 - Without explicit accelerator initialization
 - Without explicit data or program transfers between host and accelerator

High-level... with low-level access

Programming model allows programmers to start simple

Compiler gives additional guidance

Loop mappings, data location, and other performance details

Compatible with other GPU languages and libraries

- Interoperate between CUDA C/Fortran and GPU libraries
- e.g. CUFFT, CUBLAS, CUSPARSE, etc.

Directives: Easy & Powerful

Global Manufacturer of Navigation Systems

Valuation of Stock Portfolios using Monte Carlo

Global Technology Consulting Company

Interaction of Solvents and Biomolecules

University of Texas at San Antonio

5x in 40 Hours2x in 4 Hours5x in 8 Hours

Optimizing code with directives is quite easy, especially compared to CPU threads or writing CUDA kernels. The most important thing is avoiding restructuring of existing code for production applications.

-- Developer at the Global Manufacturer of Navigation Systems

Focus on Exposing Parallelism

With Directives, tuning work focuses on *exposing parallelism*, which makes codes inherently better

Example: Application tuning work using directives for new Titan system at ORNL

S3D Research more efficient combustion with nextgeneration fuels

CAM-SE

Answer questions about specific climate change adaptation and mitigation scenarios

- Tuning top 3 kernels (90% of runtime)
- 3 to 6x faster on CPU+GPU vs. CPU+CPU
- But also improved all-CPU version by 50%

- Tuning top key kernel (50% of runtime)
- 6.5x faster on CPU+GPU vs. CPU+CPU
- Improved performance of CPU version by 100%

A Very Simple Example: SAXPY SAXPY in C SAXPY in Fortran

void saxpy(int n, float a, float *x, float *restrict y)

```
#pragma acc kernels
for (int i = 0; i < n; ++i)
    y[i] = a*x[i] + y[i];
}</pre>
```

```
// Perform SAXPY on 1M elements
saxpy(1<<20, 2.0, x, y);</pre>
```

subroutine saxpy(n, a, x, y)
real :: x(:), y(:), a
integer :: n, i
!\$acc kernels
do i=1, n
y(i) = a*x(i)+y(i)
enddo
!\$acc end kernels
end subroutine saxpy

\$ Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)

• • •

• • •

Jacobi Iteration: C Code


```
for( int j = 1; j < n-1; j++) {
   for( int i = 1; i < m-1; i++ ) {
      A[j][i] = Anew[j][i];
   }
}</pre>
```

iter++;

Jacobi Iteration: OpenMP C Code

```
while ( err > tol && iter < iter_max ) {
    err=0.0;</pre>
```

}

iter++:

#pragma omp parallel for shared(m, n, Anew, A) reduction(max:err for(int j = 1; j < n-1; j++) { for(int i = 1; i < m-1; i++) {</pre>

```
Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + A[j-1][i] + A[j+1][i]);
```

```
err = max(err, abs(Anew[j][i] - A[j][i]);
}
```

```
#pragma omp parallel for shared(m, n, Anew, A)
for( int j = 1; j < n-1; j++) {
   for( int i = 1; i < m-1; i++ ) {
        A[j][i] = Anew[j][i];
      }
   }
}</pre>
```


Parallelize loop across CPU threads

Parallelize loop across

CPU threads

Jacobi Iteration: OpenACC C Code

#pragma acc data copy(A), create(Anew)
while (err > tol && iter < iter_max) {
 err=0.0;</pre>

```
#pragma acc kernels
for( int j = 1; j < n-1; j++) {
   for( int i = 1; i < m-1; i++ ) {
      A[j][i] = Anew[j][i];
   }
}</pre>
```

iter++;

Copy A in at beginning of loop, out at end. Allocate Anew on accelerator

Performance

CPU: Intel Xeon X5680 6 Cores @ 3.33GHz

GPU: NVIDIA Tesla M2090

Execution	Time (s)	Speedup	
CPU 1 OpenMP thread	69.80		
CPU 2 OpenMP threads	44.76	1.56x	
CPU 4 OpenMP threads	39.59	1.76x	
CPU 6 OpenMP threads	39.71	1.76x	vs. 1 CPU core
OpenACC GPU	9.78	4.06x (7.14x)	vs. 6 CPU cores (1 CPU core)

Further speedups

OpenACC allows more detailed control over parallelization

Using gang, worker, and vector clauses

By understanding more about OpenACC execution model and GPU hardware organization, we can get higher speedups on this code

By understanding bottlenecks in the code via profiling and compiler feedback, we can reorganize the code for higher performance

OpenACC Specification and Website

Full OpenACC 1.0 Specification available online

www.openacc.org

- Quick reference card also available
- Beta implementations available now from PGI, Cray, and CAPS

The OpenACC[™] API QUICK REFERENCE GUIDE

The OpenACC Application Program Interface describes a collection of compiler directives to specify loops and regions of code in standard C, C++ and Fortran to be offloaded from a host CPU to an attached accelerator, providing portability across operating systems, host CPUs and accelerators.

Most OpenACC directives apply to the immediately following structured block or loop; a structured block is a single statement or a compound statement (C or C++) or a sequence of statements (Fortran) with a single entry point at the top and a single exit at the bottom.

© 2011 OpenACC-standard.org all rights reserved

Start Now with OpenACC Directives

Sign up for a free trial of the directives compiler now!

Free trial license to PGI Accelerator

Tools for quick ramp

www.nvidia.com/gpudirectives

				Search NVIDIA USA -							
DOWNLOAD	DRIVERS	COOL STUFF	SHOP	PRODUCTS	TECHNOLOGIES	COMMUNITIES	SUPPORT				
TESLA											
NVIDIA Home > Products > High Performanc	e Computing	> OpenACC GPU Di	irectives								
GPU COMPUTING SOLUTIONS	Accelerate Your Scientific Code with OpenACC										
Main What is GPU Computing? Why Choose Tesla Industry Software Solutions	The Thousa Based o	The Open Standard for GPU Accelerator D Thousands of cores working for you. Based on the <u>OpenACC</u> standard, GPU directives are the easy, proven									
Tesla Workstation Solutions Tesla Data Center Solutions Tesla Bio Workbench	way to you can code ar of your	ectives, ito your portions	properties of two a dimensional magne directives approach port my existing co perform my compu- which resulted in a speedup (more than computation." Lear								
Where to Buy Contact US Sign up for Torla Alertr	directiv you car	tives,									
Fermi GPU Computing Architecture	#inclu #defin int ma	-									
	do #p	uble pi = 0.0 ragma acc reg:	f; long ion for	1;		E C	Professor M. Amin University of Houst				
SOFTWARE AND HARDWARE INFO Tesla Product Literature Tesla Software Features Software Development Tools CUDA Training and Consulting Services	() pr re	<pre>double t= (c pi +=4.0/(1 intf("pi=%f\n" turn 0;</pre>	double)(.0+t*t); ",pi/N);	(1+0.5)/N);		; <u>;</u> ; ; ;	The PGI compiler just how powerful software we are wr times faster on the are very pleased ar future uses, It's lik				
GPU Cloud Computing Service Providers OpenACC GPU Directives	By star working	are s	upercomputer." <u>Le</u> Dr. Kerry Black								
	urectiv	res stanuard. Of	PERACC 19								

OpenACC Talks on GTC-On-Demand

Tutorials Monday (CAPS, NVIDIA & PGI)

- Mark Harris: Getting Started with OpenACC
- Cliff Wooley: Profiling
- Michael Wolfe: Advanced Topics
- Francois Bodin: Programming Many-core Using Directives
- Talks
 - CAPS (Francois Bodin)
 - Cray (James Beyer, Luiz DeRose)
 - PGI (Brent Leback)

Thank you

dpoole@nvidia.com tbradley@nvidia.com

