
Introduction to
OpenACC Directives
Duncan Poole, NVIDIA
Thomas Bradley, NVIDIA

1,000,000’s

Early Adopters

Time

Research

Universities
Supercomputing Centers

Oil & Gas

CAE
CFD

Finance
Rendering

Data Analytics
Life Sciences

Defense
Weather
Climate

Plasma Physics

GPUs Reaching Broader Set of Developers

100,000’s

2004 Present

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

CUDA Libraries are
interoperable with OpenACC

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

OpenACC
Directives

Maximum
Flexibility

Easily Accelerate
Applications

CUDA Languages are
interoperable with OpenACC,

too!

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on
GPU and Multicore NVIDIA cuFFT

C++ STL Features
for CUDA

Sparse Linear
Algebra IMSL Library

GPU Accelerated Libraries
“Drop-in” Acceleration for Your Applications

Building-block
Algorithms for CUDA

http://developer.nvidia.com/gpu-accelerated-libraries
http://code.google.com/p/thrust/downloads/list
http://developer.nvidia.com/gpu-accelerated-libraries

OpenACC Directives

Program myscience
 ... serial code ...
!$acc kernels
 do k = 1,n1
 do i = 1,n2
 ... parallel code ...
 enddo
 enddo
!$acc end kernels
 ...
End Program myscience

CPU GPU

Your original
Fortran or C code

Simple Compiler hints

Compiler Parallelizes code

Works on many-core GPUs &
multicore CPUs

OpenACC
Compiler

Hint

Familiar to OpenMP Programmers

main() {
 double pi = 0.0; long i;

 #pragma omp parallel for reduction(+:pi)
 for (i=0; i<N; i++)
 {
 double t = (double)((i+0.05)/N);
 pi += 4.0/(1.0+t*t);
 }

 printf(“pi = %f\n”, pi/N);
}

CPU

OpenMP

main() {
 double pi = 0.0; long i;

 #pragma acc kernels
 for (i=0; i<N; i++)
 {
 double t = (double)((i+0.05)/N);
 pi += 4.0/(1.0+t*t);
 }

printf(“pi = %f\n”, pi/N);
}

CPU GPU

OpenACC

OpenACC
Open Programming Standard for Parallel Computing

“OpenACC will enable programmers to easily develop portable applications that maximize
the performance and power efficiency benefits of the hybrid CPU/GPU architecture of
Titan.”

--Buddy Bland, Titan Project Director, Oak Ridge National Lab

“OpenACC is a technically impressive initiative brought together by members of the
OpenMP Working Group on Accelerators, as well as many others. We look forward to
releasing a version of this proposal in the next release of OpenMP.”

--Michael Wong, CEO OpenMP Directives Board

OpenACC Standard

Simple: Directives are the easy path to accelerate compute
 intensive applications

Open: OpenACC is an open GPU directives standard, making GPU
 programming straightforward and portable across parallel
 and multi-core processors

Powerful: GPU Directives allow complete access to the massive
 parallel power of a GPU

OpenACC
The Standard for GPU Directives

High-level

Compiler directives to specify parallel regions in C & Fortran
Offload parallel regions
Portable across OSes, host CPUs, accelerators, and compilers

Create high-level heterogeneous programs

Without explicit accelerator initialization
Without explicit data or program transfers between host and accelerator

High-level… with low-level access

Programming model allows programmers to start simple

Compiler gives additional guidance

Loop mappings, data location, and other performance details

Compatible with other GPU languages and libraries

Interoperate between CUDA C/Fortran and GPU libraries
e.g. CUFFT, CUBLAS, CUSPARSE, etc.

Directives: Easy & Powerful

Real-Time Object
Detection

Global Manufacturer of Navigation
Systems

Valuation of Stock Portfolios
using Monte Carlo

Global Technology Consulting Company

Interaction of Solvents and
Biomolecules

University of Texas at San Antonio

Optimizing code with directives is quite easy, especially compared to CPU threads or writing CUDA kernels. The
most important thing is avoiding restructuring of existing code for production applications. ”

-- Developer at the Global Manufacturer of Navigation Systems

“
5x in 40 Hours 2x in 4 Hours 5x in 8 Hours

Focus on Exposing Parallelism
With Directives, tuning work focuses on exposing parallelism,

which makes codes inherently better

Example: Application tuning work using directives for new Titan system at ORNL

S3D
Research more efficient
combustion with next-
generation fuels

CAM-SE
Answer questions about specific
climate change adaptation and
mitigation scenarios

• Tuning top 3 kernels (90% of runtime)
• 3 to 6x faster on CPU+GPU vs. CPU+CPU
• But also improved all-CPU version by 50%

• Tuning top key kernel (50% of runtime)
• 6.5x faster on CPU+GPU vs. CPU+CPU
• Improved performance of CPU version by 100%

subroutine saxpy(n, a, x, y)
 real :: x(:), y(:), a
 integer :: n, i
!$acc kernels
 do i=1,n
 y(i) = a*x(i)+y(i)
 enddo
!$acc end kernels
end subroutine saxpy

...
$ Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n,

 float a,

 float *x,

 float *restrict y)

{

#pragma acc kernels

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y);

...

A Very Simple Example: SAXPY
SAXPY in C SAXPY in Fortran

Jacobi Iteration: C Code

while (err > tol && iter < iter_max) {
 err=0.0;

 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);

 err = max(err, abs(Anew[j][i] - A[j][i]));
 }
 }

 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }

 iter++;
}

Iterate until converged

Iterate across matrix
elements

Calculate new value from
neighbors

Compute max error for
convergence

Naïve swap input/output
arrays

Jacobi Iteration: OpenMP C Code

while (err > tol && iter < iter_max) {
 err=0.0;

#pragma omp parallel for shared(m, n, Anew, A) reduction(max:err)
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);

 err = max(err, abs(Anew[j][i] - A[j][i]);
 }
 }

#pragma omp parallel for shared(m, n, Anew, A)
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }

 iter++;
}

Parallelize loop across
CPU threads

Parallelize loop across
CPU threads

Jacobi Iteration: OpenACC C Code
#pragma acc data copy(A), create(Anew)
while (err > tol && iter < iter_max) {
 err=0.0;

#pragma acc kernels reduction(max:err)
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
 A[j-1][i] + A[j+1][i]);

 err = max(err, abs(Anew[j][i] - A[j][i]);
 }
 }

#pragma acc kernels
 for(int j = 1; j < n-1; j++) {
 for(int i = 1; i < m-1; i++) {
 A[j][i] = Anew[j][i];
 }
 }

 iter++;
}

Copy A in at beginning of
loop, out at end. Allocate

Anew on accelerator

Performance

Execution Time (s) Speedup

CPU 1 OpenMP thread 69.80 --

CPU 2 OpenMP threads 44.76 1.56x

CPU 4 OpenMP threads 39.59 1.76x

CPU 6 OpenMP threads 39.71 1.76x

OpenACC GPU 9.78 4.06x (7.14x) vs. 6 CPU cores (1 CPU core)

vs. 1 CPU core

CPU: Intel Xeon X5680
6 Cores @ 3.33GHz GPU: NVIDIA Tesla M2090

Further speedups

OpenACC allows more detailed control over parallelization
Using gang, worker, and vector clauses

By understanding more about OpenACC execution model and GPU
hardware organization, we can get higher speedups on this code

By understanding bottlenecks in the code via profiling and
compiler feedback, we can reorganize the code for higher
performance

OpenACC Specification and Website

Full OpenACC 1.0 Specification available online

www.openacc.org

Quick reference card also available

Beta implementations available now from PGI, Cray,
and CAPS

http://www.openacc.org/

Start Now with OpenACC Directives

Free trial license to PGI Accelerator

Tools for quick ramp

www.nvidia.com/gpudirectives

Sign up for a free trial of the
directives compiler now!

http://www.nvidia.com/gpudirectives

OpenACC Talks on GTC-On-Demand

Tutorials Monday (CAPS, NVIDIA & PGI)
Mark Harris: Getting Started with OpenACC
Cliff Wooley: Profiling
Michael Wolfe: Advanced Topics
Francois Bodin: Programming Many-core Using Directives

Talks
CAPS (Francois Bodin)
Cray (James Beyer, Luiz DeRose)
PGI (Brent Leback)

Thank you
dpoole@nvidia.com
tbradley@nvidia.com

mailto:dpoole@nvidia.com

	Introduction to �OpenACC Directives
	GPUs Reaching Broader Set of Developers
	3 Ways to Accelerate Applications
	3 Ways to Accelerate Applications
	3 Ways to Accelerate Applications
	Slide Number 6
	OpenACC Directives�	
	Familiar to OpenMP Programmers
	OpenACC �Open Programming Standard for Parallel Computing
	Slide Number 10
	High-level
	High-level… with low-level access
	Directives: Easy & Powerful
	Focus on Exposing Parallelism
	A Very Simple Example: SAXPY
	Jacobi Iteration: C Code
	Jacobi Iteration: OpenMP C Code
	Jacobi Iteration: OpenACC C Code
	Performance
	Further speedups
	OpenACC Specification and Website
	Start Now with OpenACC Directives
	OpenACC Talks on GTC-On-Demand
	Thank you

