Titan: A Heterogeneous Supercomputer for Leadership Science

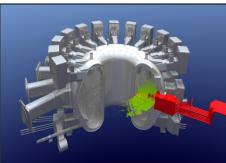
Buddy Bland Project Director Oak Ridge Leadership Computing Facility

Jack Wells Director of Science Oak Ridge Leadership Computing Facility

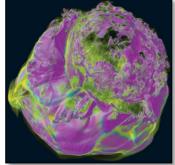
> Julia White INCITE Program Manager

NVIDIA Technology Briefings at ISC 2012 Hamburg, DE June 19, 2012

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY


Titan System Goals: Deliver breakthrough science for DOE/SC, industry, and the nation

Geosciences	Energy	Fundamental Science
Understanding our earth and the processes that impact it	Reducing U.S. reliance on foreign energy & reducing carbon footprint of	Understanding the physical processes from the scale of subatomic
– Sea level rise	production	particles to the universe
 Regional climate change Geologic carbon sequestration Biofuels Earthquakes and Tsunamis 	 Carbon free energy production from fusion, fission, solar, wind, and geothermal sources Improving the efficiency of combustion energy sources 	 Understanding the makeup of atoms to supernovae Developing advanced materials for applications such as photovoltaics & electronic components



20

OLCF

Accomplishing these missions requires the power of Titan

Titan System Goals: Promote application development for highly scalable architectures through the Center for Accelerated Application Readiness (CAAR)

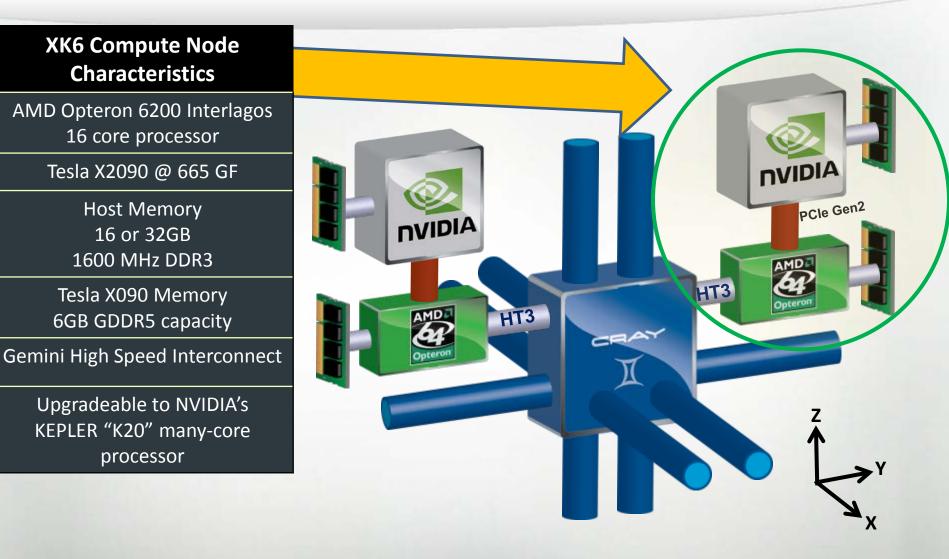
Using six representative apps to explore techniques to effectively use highly scalable architectures

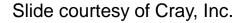
- CAM-SE Atmospheric model
- **Denovo** Nuclear reactor neutron transport
- wI-LSMS First principles statistical mechanics of magnetic materials
- S3D Combustion model

3 OLCF 20

- LAMMPS Molelcular dynamics
- NRDF Adaptive mesh refinement

- Data locality
- Explicit data management
- Hierarchical parallelism
- Exposing more parallelism through code refactoring and source code directives
- Highly parallel I/O
- Heterogeneous multi-core
 processor architecture




Cray XK6 Compute Node

4

OLCF 20



ORNL's "Titan" System

- Upgrade of Jaguar from Cray XT5 to XK6
- Cray Linux Environment operating system
- Gemini interconnect
 - 3-D Torus

5 OLCF 20

- Globally addressable memory
- Advanced synchronization features
- AMD Opteron 6274 processors (Interlagos)
- New accelerated node design using NVIDIA multi-core accelerators
 - 2011: 960 NVIDIA x2090 "Fermi" GPUs
 - 2012: 14,592 NVIDIA K20 "Kepler" GPUs
- 20+ PFlops peak system performance
- 600 TB DDR3 mem. + 88 TB GDDR5 mem

Compute Nodes	18,688	
Login & I/O Nodes	512	
Memory per node	32 GB + 6 GB	
# of Fermi chips (2012)	960	
# of NVIDIA K20 "Kepler" processor (2013)	14,592	
Total System Memory	688 TB	
Total System Peak Performance	20+ Petaflops	
Cross Section Bandwidths	X=14.4 TB/s Y=11.3 TB/s Z=24.0 TB/s	

Buddy Bland – ISC 2012 National Labor

Hybrid Programming Model

- On Jaguar today with 299,008 cores, we are seeing the limits of a single level of MPI scaling for most applications
- To take advantage of the vastly larger parallelism in Titan, users need to use hierarchical parallelism in their codes
 - Distributed memory: MPI, SHMEM, PGAS

6 OLCF 20

- Node Local: OpenMP, Pthreads, local MPI communicators
- Within threads: Vector constructs on GPU, libraries, CPU SIMD
- These are the same types of constructs needed on **all** multi-PFLOPS computers to scale to the full size of the systems!

How do you program these nodes?

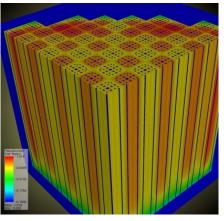
- Compilers
 - OpenACC is a set of compiler directives that allows the user to express hierarchical parallelism in the source code so that the compiler can generate parallel code for the target platform, be it GPU, MIC, or vector SIMD on CPU
 - Cray compiler supports XK6 nodes and is OpenACC compatible
 - CAPS HMPP compiler supports C, C++ and Fortran compilation for heterogeneous nodes and is adding OpenACC support
 - PGI compiler supports OpenACC and CUDA Fortran
- Tools
 - Allinea DDT debugger scales to full system size and with ORNL support will be able to debug heterogeneous (x86/GPU) apps
 - ORNL has worked with the Vampir team at TUD to add support for profiling codes on heterogeneous nodes
 - CrayPAT and Cray Apprentice support XK6 programming
- 7 OLCF 20

Titan Tool Suite

8 OLCF 20

Compilers	Performance Tools	GPU Libraries	Debuggers	Source Code
Cray PGI CAP-HMPP Pathscale NVIDIA CUDA GNU Intel	CrayPAT Apprentice Vampir VampirTrace TAU HPCToolkit CUDA Profiler	MAGMA CULA Trillinos libSCI	DDT NVIDIA Gdb	HMPP Wizard

Titan: Early Applications & Stretch Goals


S3D: Turbulent Combustion

Directly solves Navier-Stokes equations. Stretch goals is to move beyond simple fuels to realistic transportation fuels, e.g., iso-octane or biofuels

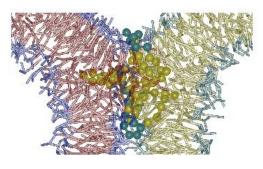
DENOVO: Neutron Transport in Reactor Core

DENOVO is a component of the DOE CASL Hub, necessary to achieve CASL challenge problems

WL-LSMS: Statistical Mechanics of Magnetic Materials

OLCF 20

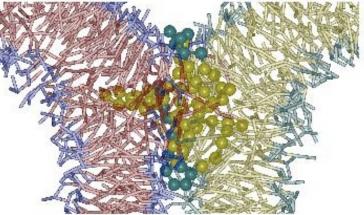
Calculate the free energy for magnet materials. Applications to magnetic recording, magnetic processing of structural materials


CAM-SE: Community Atmosphere Model – Spectral Elements

CAM simulation using Mozart tropospheric chemistry with 106 constituents at 14 km horizontal grid resolution

LAMMPS: Biological Membrane Fusion

Coarse-grain MD simulation of biological membrane fusion in 5 wall clock days.



LAMMPS

Large-scale, massively parallel molecular dynamics

Code Description

- Classical N-body problem of atomistic modeling
- Force fields available for chemical, biological, and materials applications
- Long-range electrostatics evaluated using a "particle-particle, particle-mesh" (PPPM) solver.
- 3D FFT in particle-mesh solver limits scaling

Insights into the molecular mechanism of membrane fusion from simulation. Stevens et al., *PRL* **91** (2003)

Porting Strategy

10 OLCF 20

- For PPPM solver, replace 3-D FFT with grid-based algorithms that reduce interprocess communication
- Parallelism through domain decomposition of particle-mesh grid
- Accelerated code builds with OpenCL or CUDA

Early Performance Results on XK6:

XK6 outperforms XE6 by 3.2x

Science Target (20PF Titan)

 Simulate biological membrane fusion in coarse-grained MD within 5 wall clock days

CAM-SE

Community Atmosphere Model - Spectral Elements

Code Description

- Employs equal-angle, cubed-sphere grid and terrain-following coordinate system.
- Scaled to 172,800 cores on XT5
- Exactly conserves dry mass without the need for ad hoc fixes.
- Original baseline code achieves parallelism through domain decomposition using one MPI task per element

Porting Strategy

- Using realistic "Mozart" chemical tracer network, tracer transport (i.e., advection) dominates the run time.
- Use hybrid MPI/OpenMP parallelism
- Intensive kernels are coded in CUDA Fortran
- Migration in future to OpenACC

Cubed-sphere grid of CAM spectral element model. Each cube panel is divided into elements.

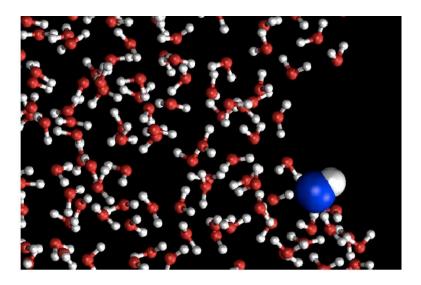
http://www-personal.umich.edu/~paullric/A_CubedSphere.png

Early Performance Results on XK6:

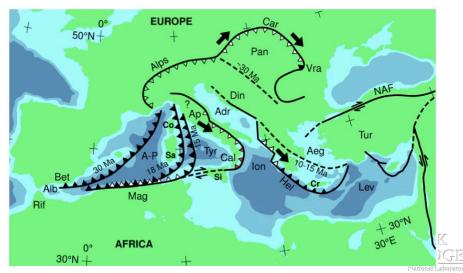
- Refactored code was 1.7x faster on Cray XT5
- XK6 outperforms XE6 by 1.5x

Science Target (20PF Titan)

 CAM simulation using Mozart tropospheric chemistry with 106 constituents at 14 km horizontal grid resolution


Performance of additional community codes

CP2K: Molecular Simulation


Explore electronic and chemical phenomena in complex systems and materials. Compute the free-energy profiles of individual chemical reactions using ensemble methods to statistically explore the important configurations that give rise to novel phenomena,

SPECFEM-3D Seismic Imaging

Calculate the free energy for magnet materials. Applications to magnetic recording, magnetic processing of structural materials

Mediterranean-Calabria Paleotectonics

¹² OLCF 20

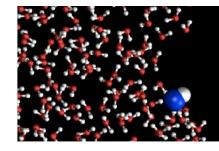
CP2K

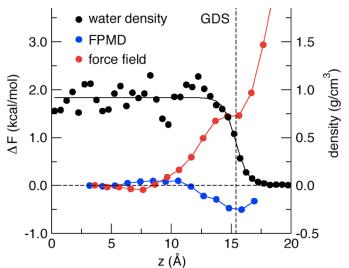
"Swiss-army knife for molecular science"

Code Description

- Open source, global user base
 O J. Hutter, J. VandeVondele
- Density-functional theory:
 - o Linear-scaling SCF
 - O GGA, HFX, & MP2
- Hybrid QM/MM calculations
- Dense & sparse linear algebra
- Regular grid: multigrid and FFT

Porting Strategy


(J. VandeVondle, ETH)


- Port sparse linear algebra library
- Matrix multiply kernels are coded in CUDA
- MPI performance is crucial

13 OLCF 20

Early days, results will improve

Is the surface of liquid water is acidic or basic? Mundy et al. show that the hydroxide anion is slightly stabilized at the interface – **Mundy, et al., Chem. Phys. Letts. 481, 2 (2009)**

Early Performance Results on XK6: Peter Messmer (NVIDIA)

XK6 outperforms XE6 by 1.5x

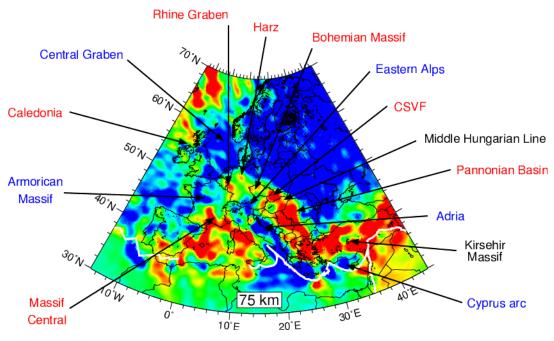
Science Target (20PF Titan) Chris Mundy (PNNL)

 Ion adsorption at interfaces, for fuel cells, chemical catalysis, biological pumps, atmospheric science

SPECFEM-3D

Seismic imaging

Code Description


- Open source, global user base
- Spectral element wave propagation
- Unstructured grids
- Explicit time propagation
- Full-space waveform inversion
- MPI parallel, excellent scaling
- GB Prize (SC03, SC08 finalist)

Porting Strategy

(Olaf Schenk - Lugano)

- Force calculation is the heaviest kernel
- Stencil kernels are memory bound, data locality is crucial
- CUDA accelerated

14 OLCF 20

Early Performance Results on XK6: Peter Messmer (NVIDIA)

XK6 outperforms XE6 by 2.5x

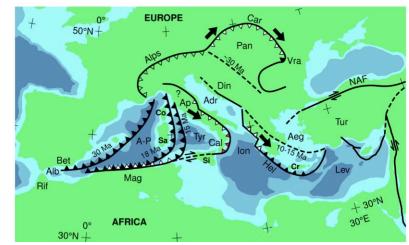
Science Target (20PF Titan) Jeroen Tromp (Princeton)

 Adjoint tomography of the entire planet -- requires analysis of 5,000 earthquakes worldwide, using an estimated 739 million core-hours (on Cray XT5) OAK

SPECFEM-3D

Seismic imaging

Code Description


- Open source, global user base
- Spectral element wave propagation
- Unstructured grids
- Explicit time propagation
- Full-space waveform inversion
- MPI parallel, excellent scaling
- GB Prize (SC03, SC08 finalist)

Porting Strategy

(Olaf Schenk - Lugano)

- Force calculation is the heaviest kernel
- Stencil kernels are memory bound, data locality is crucial
- CUDA accelerated

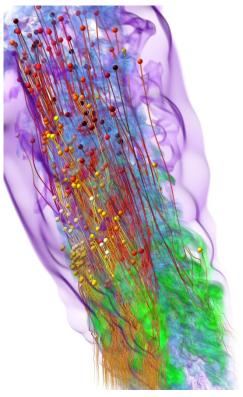
Mediterranean-Calabria Paleotectonics

Analysis of 190 European quakes revealed seismic hotspots in the upper mantle. The imaging detailed the subduction of Africa, volcanism in the Czech Republic, a "hole" under Bulgaria, and Italy's counterclockwise rotation over the past 6 million years. J. Tromp, ACSS Symposium

Early Performance Results on XK6: Peter Messmer (NVIDIA)

XK6 outperforms XE6 by 2.5x

Science Target (20PF Titan) Jeroen Tromp (Princeton)


 Adjoint tomography of the entire planet -- requires analysis of 5,000 earthquakes worldwide, using an estimated 739 million core-hours (on Cray XT5) OAK

15 OLCF 20

Washington Symposium Highlighted Science Enabled by Hybrid Supercomputing

ACSS 2012 gathers novel platform's best, brightest

- ORNL, NCSA, and CSCS gathered experts in science, engineering, and computing from around the world to discuss research advances that are now possible with extreme-scale hybrid supercomputers.
- 100 attendees of the Accelerating Computational Science Symposium 2012 (ACSS 2012), held March 28–30, 2012, in Washington, D.C., explored how hybrid supercomputers speed discoveries.
- Delivering dramatic gains in computational performance and power efficiency compared with CPU-only systems, they enable researchers to accelerate a range of applications.
- The hybrid architecture is the foundation of ORNL's "Titan" supercomputer, which will reach 20 petaflops of performance by the end of this year.

S3D combustion code: lifted ethylene-air jet flame computed from DNS and tracer particle trajectories. C.S. Yoo and J. Chen performed the DNS. H. Yu (Sandia); R. Grout of the NRELperformed volume rendering.

http://www.olcf.ornl.gov/events

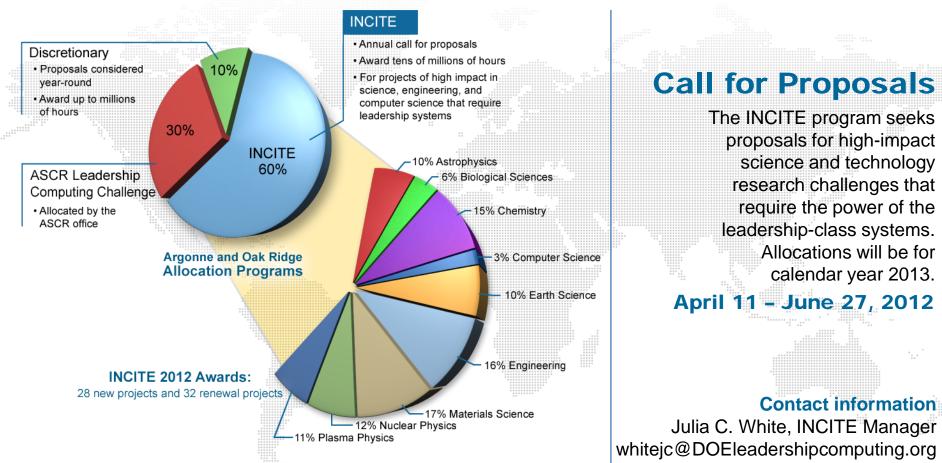
How Effective are GPUs on Scalable Applications?

OLCF-3 Early Science Codes -- Performance Measurements on TitanDev

Application	XK6 vs. XE6 Performance Ratio Titan Dev : Monte Rosa
S3D Turbulent combustion	1.4
Denovo 3D neutron transport for nuclear reactors	3.3
LAMMPS Molecular dynamics	3.2
WL-LSMS Statistical mechanics of magnetic materials	1.6
CAM-SE Community atmosphere model	1.5

Cray XK6: Fermi GPU plus Interlagos CPU XE6: AMD Dual Interlagos

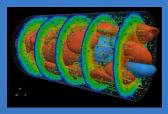
Additional Applications from Community Efforts Current performance measurements on TitanDev


Application	XK6 vs. XE6 Performance Ratio Titan Dev : Monte Rosa	
NAMD High-performance molecular dynamics	1.4	
Chroma High-energy nuclear physics	6.1	
QMCPACK Electronic structure of materials	3.0	
SPECFEM-3D Seismology	2.5	
GTC Plasma physics for fusion-energy	1.6	
CP2K Chemical physics	1.5	

¹⁸ OLCF 20

```
National Laboratory
```

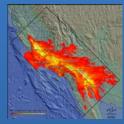
Innovative and Novel Computational Impact on Theory and Experiment


INCITE provides awards of time on the Oak Ridge and Argonne Leadership Computing Facility (OLCF and ALCF) systems for researchers to pursue transformational advances in science and technology: **1.7 billion core hours** were awarded in 2012.

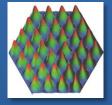
Diversity of INCITE science

Simulating a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics method. - George Karniadakis, Brown University

Provide new insights into the dynamics of turbulent combustion processes in internal-combustion engines. -Jacqueline Chen and Joseph Oefelein, Sandia National Laboratories



Demonstration of high-fidelity capture of airfoil boundary layer, an example of how this modeling capability can transform product development.


- Umesh Paliath, GE Global Research

Calculating an improved probabilistic seismic hazard forecast for California.

- Thomas Jordan, University of Southern California

Modeling charge carriers in metals and semiconductors to understand the nature of these ubiquitous electronic devices.

High-fidelity simulation of complex suspension flow for practical rheometry.

- William George, National Institute of Standards and Technology

- Richard Needs, University of Cambridge, UK

Other INCITE research topics

- Glimpse into dark matter
- Supernovae ignition
- Protein structure
- Creation of biofuels
- Replicating enzyme functions
- Global climate
- Regional earthquakes
- Carbon sequestration
- Turbulent flow
- Propulsor systems

- Membrane channels
- Protein folding
- Chemical catalyst design
- Combustion
- Algorithm development

- Nano-devices
- Batteries
- Solar cells
- Reactor design
- Nuclear structure

Access to leadership-class resources

INCITE Eligibility Questions

INCITE is designed for investigators across a wide range of disciplines who are prepared to explore the impact on their research of using tens to hundreds of thousands of processors.

INCITE is open to researchers worldwide. Funding should already be in place for staff, etc, from a recognizable source (state, federal, or private).

- Early access may be requested to prepare for INCITE. See the Director's Discretionary programs.
 - ALCF: <u>www.alcf.anl.gov</u>
 - OLCF: <u>www.olcf.ornl.gov</u>
- INCITE information
 - Previous awards: <u>www.doeleadershipcomputing.org</u>
 - Call for Proposals: <u>http://hpc.science.doe.gov</u>

Acknowledgements

- OLCF's Center for Accelerated Application Readiness (CAAR)
 - B. Messer (leader), W. Joubert, M. Brown, M. Norman, M. Eisenbach, R. Shankaran,
- Cray Center of Excellence at ORNL
 - J. Levesque, J. Larkin

22 **DLCF ZD**

- NVIDIA Development Technicians
 - C. Lindahl, C. Woolley, P. Micikevicius, J. Luitjens, C. Ponder, S. Tariq, M. Clark, P. Messmer, P. Wang
- Swiss National Supercomputing Centre, CSCS, for their assistance in accessing their Cray XE6 platform, Monte Rosa.
- National Center for Supercomputing Applications, NCSA
- U.S. Department of Energy, Office of Science
- Oak Ridge Leadership Computing Facility at the ORNL

