<A NVIDIA.

55
e
@
o
i~
5 S
< <
o O
w =
N 8 3
()ig g
=) =
T
e
U N
Q =
@R =

© NVIDIA Corporation 2011

<3

Outline A

= Kernel optimizations

= Launch configuration

= Global memory throughput

= Shared memory access

= Instruction throughput / control flow

= Optimization of CPU-GPU Iinteraction

= Maximizing PCle throughput
= Qverlapping kernel execution with memory copies

© NVIDIA Corporation 2011

<3

NVIDIA.

Launch Configuration

© NVIDIA Corporation 2011

Launch Configuration

Key to understanding:
» |nstructions are issued in order

= A thread stalls when one of the operands isn’t ready:

- Memory read by itself doesn'’t stall execution
= Latency is hidden by switching threads

- GMEM latency: 400-800 cycles

- Arithmetic latency: 18-22 cycles

How many threads/threadblocks to launch?

Conclusion:
= Need enough threads to hide latency

© NVIDIA Corporation 2011

>

NVIDIA

<3

Launch Configuration AVIDIA

® Hiding arithmetic latency:
® Need warps (576) threads per SM
¢ Or, latency can also be hidden with independent instructions from the same warp

® ro example, if instruction never depends on the output of preceding instruction,
then only 9 warps are needed, etc.

® Maximizing global memory throughput:
® Depends on the access pattern, and word size
® Need enough memory transactions in flight to saturate the bus
® Independent loads and stores from the same thread
® Loads and stores from different threads

® Larger word sizes can also help (IS twice the transactions of , for
example)

© NVIDIA Corporation 2011

Maximizing Memory Throughput <A

nvibDiA

= Increment of an array of 64M elements
= Two accesses per thread (load then store)
= The two accesses are dependent, so really 1 access per thread at a time

= Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Several independent smaller
accesses have the same effect
as one larger one.

— 32-hit access For example.

—64-bitaccess Four 32-bit -= one 128-bit
128-bit access

256 384 512 640 768 896 1024 1152 1280 1408 1536

Threads per Multiprocessor

© NVIDIA Corporation 2011

Launch Configuration: Summary

= Need enough total threads to keep GPU busy

= Typically, you'd like threads per SM
More if processing one fp32 element per thread
= Of course, exceptions exist

= Threadblock configuration
= Threads per block should be a multiple of warp size (32)
= SM can concurrently execute up to 8 threadblocks
- Really small threadblocks prevent achieving good occupancy
- Really large threadblocks are less flexible

- | generally use , but use whatever is best for the
application

= For more details:

= Vasily Volkov's GTC2010 talk “Better Performance at Lower
Occupancy” (http://www.gputechconf.com/page/gtc-on-
demand.html#session2238)

© NVIDIA Corporation 2011

<3

NVIDIA

=

NVIDIA.

Global Memory Throughput

Memory Hierarchy Review f,%A

= Local storage
= Each thread has own local storage
= Mostly registers (managed by the compiler)

Shared memory /L1
= Program configurable: 16KB shared / 48 KB L1 OR 48KB shared / 16KB L1
= Shared memory is accessible by the threads in the same threadblock
= Very low latency
= Very high throughput: 1+ TB/s aggregate

L2
= All accesses to global memory go through L2, including copies to/from CPU host

Global memory
= Accessible by all threads as well as host (CPU)
= High latency (400-800 cycles)
= Throughput: upto 177 GB/s

© NVIDIA Corporation 2011

Fermi Memory Hierarchy Review

© NVIDIA Corporation 2011

SM-0

Registers

SMEM

SM-1

Registers

SMEM

Global Memory

<3

nvibiA

SM-N

Registers

SMEM

GMEM Operations >

NVIDIA

= Two types of loads:

= Caching
- Default mode
- Attempts to hit in L1, then L2, then GMEM
- Load granularity is 128-byte line
= Non-caching
- Compile with option to nvcc
- Attempts to hit in L2, then GMEM

- Do not hitin L1, invalidate the line if it's in L1 already
- Load granularity is 32-bytes

= Stores:
= |nvalidate L1, write-back for L2

© NVIDIA Corporation 2011

Load Operation <3

NVIDIA

* Memory operations are issued per warp (32 threads)
= Just like all other instructions

= Operation:
= Threads in a warp provide memory addresses

= Determine which lines/segments are needed
= Request the needed lines/segments

© NVIDIA Corporation 2011

Caching Load N>

nvibiA

= Warp requests 32 aligned, consecutive 4-byte words

= Addresses fall within 1 cache-line
= Warp needs 128 bytes
= 128 bytes move across the bus on a miss
= Bus utilization: 100%

addresses from a warp

bV

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA Corporation 2011

Non-caching Load N>

NVIDIA

= Warp requests 32 aligned, consecutive 4-byte words

= Addresses fall within 4 segments
= Warp needs 128 bytes
= 128 bytes move across the bus on a miss
= Bus utilization: 100%

addresses from a warp

bV

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA Corporation 2011

Caching Load N>

nvibiA

= Warp requests 32 aligned, permuted 4-byte words

= Addresses fall within 1 cache-line
= Warp needs 128 bytes
= 128 bytes move across the bus on a miss
= Bus utilization: 100%

addresses from a warp

I I S

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA Corporation 2011

Non-caching Load N>

NVIDIA

= Warp requests 32 aligned, permuted 4-byte words

= Addresses fall within 4 segments
= Warp needs 128 bytes
= 128 bytes move across the bus on a miss
= Bus utilization: 100%

addresses from a warp

IS IS IS SN) 0 o N N N SN SN N

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA Corporation 2011

Caching Load N>

NVIDIA

= Warp requests 32 misaligned, consecutive 4-byte words

= Addresses fall within 2 cache-lines
= Warp needs 128 bytes
= 256 bytes move across the bus on misses
= Bus utilization: 50%

addresses from a warp

1 S

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA Corporation 2011

Non-caching Load N>

nvibiA

= Warp requests 32 misaligned, consecutive 4-byte words

= Addresses fall within at most 5 segments
= Warp needs 128 bytes
= 160 bytes move across the bus on misses

= Bus utilization: at least 80%
- Some misaligned patterns will fall within 4 segments, so 100% utilization

addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA Corporation 2011

Caching Load N>

NVIDIA

= All threads in a warp request the same 4-byte word

= Addresses fall within a single cache-line
= Warp needs 4 bytes
= 128 bytes move across the bus on a miss
= Bus utilization: 3.125%

addresses from a warp

N ———

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA Corporation 2011

Non-caching Load N>

nvibiA

= All threads in a warp request the same 4-byte word

= Addresses fall within a single segment
= Warp needs 4 bytes
= 32 bytes move across the bus on a miss
= Bus utilization: 12.5%

addresses from a warp

N ———

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA Corporation 2011

Caching Load N>

NVIDIA

= Warp requests 32 scattered 4-byte words

= Addresses fall within N cache-lines
= Warp needs 128 bytes
= N*128 bytes move across the bus on a miss
= Bus utilization: 128/ (N*128)

addresses from a warp
' Y S I

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA Corporation 2011

Non-caching Load N>

NVIDIA

= Warp requests 32 scattered 4-byte words

» Addresses fall within N segments
= Warp needs 128 bytes
= N*32 bytes move across the bus on a miss
= Bus utilization: 128/ (N*32)

addresses from a warp
S IS SN s NI IS I IS

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses

© NVIDIA Corporation 2011

Impact of Address Alignment ,f,%m

Warps should access aligned regions for maximum memory throughput
= L1 can help for misaligned loads if several warps are accessing a contiguous region
= ECC further significantly reduces misaligned store throughput

Experiment:
— Copy 16MB of floats
— 256 threads/block

Greatest throughput

===Fermi: caching copy drop.
|w==Fermi: non-caching copy — CA loads: 15%
GT200: copy _CG loads. 32%

12 16 20 24

misalignment, in 4-byte words

© NVIDIA Corporation 2011

GMEM Optimization Guidelines <3

NVIDIA

= Strive for perfect coalescing
= Align starting address (may require padding)
= A warp should access within a contiguous region

= Have enough concurrent accesses to saturate the bus

= Process several elements per thread
- Multiple loads get pipelined
- Indexing calculations can often be reused

= Launch enough threads to maximize throughput
- Latency is hidden by switching threads (warps)

= Try L1 and caching configurations to see which one works best
= Caching vs non-caching loads (compiler option)
= 16KB vs 48KB L1 (CUDA call)

© NVIDIA Corporation 2011

=

NVIDIA.

Shared Memory

© NVIDIA Corporation 2011

Shared Memory <3

NVIDIA

= Uses:
= Inter-thread communication within a block
= Cache data to reduce redundant global memory accesses
= Use it to improve global memory access patterns
= Qrganization:
banks, wide banks
= Successive 4-byte words belong to different banks

= Performance:

= smem accesses are issued per 32 threads (warp)

if n threads of 32 access different 4-byte words in the same
bank, n accesses are executed serially

threads access the same word in one fetch
- Could be different bytes within the same word

© NVIDIA Corporation 2011

Bank Addressing Examples >

nvibDiA

= No Bank Conflicts = No Bank Conflicts

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 31

Bank 31

Thread O
Thread 1

Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

Thread 31

Bank 31

© NVIDIA Corporation 2011

Bank Addressing Examples

>

nvibDiA

2-way Bank Conflicts

Thread O
Thread 1
Thread 2
Thread 3

Thread 4

Thread 28
Thread 29
Thread 30
Thread 31

Bank 31

= 8-way Bank Conflicts

Thread O
Thread 1
Thread 2
Thread 3

Thread 4
Thread 5
Thread 6
Thread 7

Thread 31

Bank 31

© NVIDIA Corporation 2011

Shared Memory: Avoiding Bank Conflicts >

NVIDIA

= 32x32 SMEM array

= Warp accesses a column:
= 32-way bank conflicts (threads in a warp access the same bank)

warps:
0 1 2 31
[]
Bank O (=
Bank 1
o
- .
Bank 31

© NVIDIA Corporation 2011

Shared Memory: Avoiding Bank Conflicts >

NVIDIA

= Add a column for padding:
= 32x25 SMEM array

= Warp accesses a column:
« 32 different banks, no bank conflicts

warps:
0 1 2 31 padding

Bank O
Bank 1

Bank 31

© NVIDIA Corporation 2011

Additional “memories” <3

NVIDIA.

= Texture and constant

= Read-only

Data resides in global memory
Read through different caches

© NVIDIA Corporation 2011

Texture <3

nvibiA

= Separate cache

= Dedicated texture cache hardware provides:
= Qut-of-bounds index handling
- clamp or wrap-around
= QOptional interpolation
- Think: using fp indices for arrays
- Linear, bilinear, trilinear
- Interpolation weights are 9-bit
= Optional format conversion
- {char, short, int} -> float
= All of these are “free”

© NVIDIA Corporation 2011

=

NVIDIA.

Instruction Throughput / Control Flow

Runtime Math Library and Intrinsics >

NVIDIA

= Two types of runtime math library functions

many map directly to hardware ISA
Fast but lower accuracy (see CUDA Programming Guide for full details)
Examples: sinf(x), expf(x), powi(x,y)
compile to multiple instructions

- Slower but higher accuracy ()
Examples: sin(x), exp(x), pow(X, y)

= A number of additional intrinsics:
= sincosf(), _ frcp_rz(), ...
= Explicit IEEE rounding modes (rz,rn,ru,rd)

© NVIDIA Corporation 2011

Control Flow <3

NVIDIA

= Instructions are issued per 32 threads (warp)

= Divergent branches:
= Threads within a single warp take different paths

= Different execution paths within a warp are serialized

= Different warps can execute different code with no impact on
performance

= Avoid diverging within a warp
= Example with divergence:

- Branch granularity < warp size
= Example without divergence:

- Branch granularity is a whole multiple of warp size

© NVIDIA Corporation 2011

=

NVIDIA.

CPU-GPU Interaction

© NVIDIA Corporation 2011

Pinned (hon-pageable) memory

= Pinned memory enables:
= faster PCle copies
= memcopies asynchronous with CPU
= memcopies asynchronous with GPU
= Usage
= cudaHostAlloc / cudaFreeHost
- instead of malloc / free
= cudaHostRegister / cudaHostUnregister
- pin regular memory after allocation

= Implication:

= pinned memory is essentially removed from host virtual memory

© NVIDIA Corporation 2011

<3

NVIDIA

Streams and Async AP >

NVIDIA

= Default API:
= Kernel launches are asynchronous with CPU
= Memcopies (D2H, H2D) block CPU thread
= CUDA calls are serialized by the driver
= Streams and async functions provide:
= Memcopies (D2H, H2D) asynchronous with CPU
= Ability to concurrently execute a kernel and a memcopy

= Stream = sequence of operations that execute in issue-order
on GPU

= QOperations from different streams may be interleaved
= A kernel and memcopy from different streams can be overlapped

© NVIDIA Corporation 2011

Overlap kernel and memory copy

= Requirements:
= D2H or H2D memcopy from pinned memory
= Kernel and memcopy in different, non-0 streams

= Code:
cudaStream _t , Stream2;
cudaStreamCreate();

cudaStreamCreate(&stream?2);

cudaMemcpyAsync(dst, src, size, dir,);
kernel<<<grid, block, 0, stream2>>>(...);

© NVIDIA Corporation 2011

<3

NVIDIA

Call Sequencing for Optimal Overlap N>

© NVIDIA Corporation 2011

NVIDIA

CUDA calls are dispatched to the hw in the sequence they were issued

Fermi can concurrently execute:
= Upto 16 kernels
= Upto 2 memcopies, as long as they are in different directions (D2H and H2D)

A call is dispatched if both are true:

= Resources are available

= Preceding calls in the same stream have completed
Scheduling:

= Kernels are executed in the order in which they were issued

= Threadblocks for a given kernel are scheduled if all threadblocks for preceding kernels
have been scheduled and there still are SM resources available

Note that if a call blocks, it blocks all other calls of the same type behind it,
even in other streams

= Type is one of { kernel, memcopy}

Stream Examples (current HW) N>

NVIDIA.

K1,M1,K2 M2: /K: A
kernel
M:
K1,K2,M1,M2: memcopy
\nteger: stread ID -/
K1,M1,M2;
K1,M2,M1:
K1,M2,M2:

Time ->

© NVIDIA Corporation 2011

More on Dual Copy <3

NVIDIA

* Fermi is capable of duplex communication with the host
= PCle bus is duplex
= The two memcopies must be in different streams, different directions

= Not all current host systems can saturate duplex PCle
bandwidth:

= Likely issues with IOH chips
= |f this is important to you, test your host system

© NVIDIA Corporation 2011

Duplex Copy: Experimental Results ,f,%A

10.8 GB/s
DRA DRA DRAM

‘ PCle, x16 ‘

16 GBS CPU- CPU- CPU-0
‘ QPI, 6.4 GT/s

25.6 GB/s ‘
‘ 3xDDR3, 1066 MHz IOH IOH
A\ g6 GB/s AN X58 D36

GPU-0

© NVIDIA Corporation 2011

Duplex Copy: Experimental Results ,f,%A

(102

PCle, x16
16 GB/s

QPI, 6.4 GT/s
25.6 GB/s

3xDDR3, 1066 MHz

25.8 GB/s

~

10.8 GB/s

DRA

CPU-

%

IOH

X58

GPU-0

11 GB/s

DRA DRAM

CPU- w CPU-

IOH

D36

GPUDirect v2.0: Peer-to-Peer Communication <3

NVIDIA

Direct Transfers b/w GPUs

GPU1 GPU2
Memory Memory

© NVIDIA Corporation 2011

Unified Virtual Addressing <3

Easier to Program with Single Address Space Gl

No UVA: Multiple Memory Spaces UVA : Single Address Space
System GPUO GPU1 System GPUO GPU1
Memory Memory Memory Memory

CPU

© NVIDIA Corporation 2011

. 1 1
= e

PCl-e PCl-e

Summary <3

NVIDIA

Kernel Launch Configuration:
= Launch enough threads per SM to hide latency
= Launch enough threadblocks to load the GPU

= Global memory:
= Maximize throughput (GPU has lots of bandwidth, use it effectively)

» Use shared memory when applicable (over 1 TB/s bandwidth)

= GPU-CPU interaction:
= Minimize CPU/GPU idling, maximize PCle throughput

= Use analysis/profiling when optimizing:
= “Analysis-driven Optimization” part of the tutorial following

© NVIDIA Corporation 2011

