
© NVIDIA Corporation 2011

CUDA OPTIMIZATIONS
ISC 2011 Tutorial

Tim C. Schroeder, NVIDIA Corporation

© NVIDIA Corporation 2011

Outline

 Kernel optimizations
 Launch configuration

 Global memory throughput

 Shared memory access

 Instruction throughput / control flow

 Optimization of CPU-GPU interaction
 Maximizing PCIe throughput

 Overlapping kernel execution with memory copies

© NVIDIA Corporation 2011

Launch Configuration

© NVIDIA Corporation 2011

Launch Configuration

 Key to understanding:

 Instructions are issued in order

 A thread stalls when one of the operands isn’t ready:

- Memory read by itself doesn’t stall execution

 Latency is hidden by switching threads

- GMEM latency: 400-800 cycles

- Arithmetic latency: 18-22 cycles

 How many threads/threadblocks to launch?

 Conclusion:

 Need enough threads to hide latency

© NVIDIA Corporation 2011

Launch Configuration

Hiding arithmetic latency:

Need ~18 warps (576) threads per SM

Or, latency can also be hidden with independent instructions from the same warp

For example, if instruction never depends on the output of preceding instruction,
then only 9 warps are needed, etc.

Maximizing global memory throughput:

Depends on the access pattern, and word size

Need enough memory transactions in flight to saturate the bus

Independent loads and stores from the same thread

Loads and stores from different threads

Larger word sizes can also help (float2 is twice the transactions of float, for
example)

© NVIDIA Corporation 2011

Maximizing Memory Throughput

 Increment of an array of 64M elements
 Two accesses per thread (load then store)

 The two accesses are dependent, so really 1 access per thread at a time

 Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Several independent smaller
accesses have the same effect
as one larger one.

For example:

Four 32-bit ~= one 128-bit

© NVIDIA Corporation 2011

Launch Configuration: Summary

 Need enough total threads to keep GPU busy
 Typically, you’d like 512+ threads per SM

- More if processing one fp32 element per thread

 Of course, exceptions exist

 Threadblock configuration
 Threads per block should be a multiple of warp size (32)

 SM can concurrently execute up to 8 threadblocks

- Really small threadblocks prevent achieving good occupancy

- Really large threadblocks are less flexible

- I generally use 128-256 threads/block, but use whatever is best for the
application

 For more details:
 Vasily Volkov’s GTC2010 talk “Better Performance at Lower

Occupancy” (http://www.gputechconf.com/page/gtc-on-
demand.html#session2238)

© NVIDIA Corporation 2011

Global Memory Throughput

© NVIDIA Corporation 2011

Memory Hierarchy Review

 Local storage
 Each thread has own local storage

 Mostly registers (managed by the compiler)

 Shared memory / L1
 Program configurable: 16KB shared / 48 KB L1 OR 48KB shared / 16KB L1

 Shared memory is accessible by the threads in the same threadblock

 Very low latency

 Very high throughput: 1+ TB/s aggregate

 L2
 All accesses to global memory go through L2, including copies to/from CPU host

 Global memory
 Accessible by all threads as well as host (CPU)

 High latency (400-800 cycles)

 Throughput: up to 177 GB/s

© NVIDIA Corporation 2011

Fermi Memory Hierarchy Review

L2

Global Memory

Registers

L1

SM-N

SMEM

Registers

L1

SM-0

SMEM

Registers

L1

SM-1

SMEM

© NVIDIA Corporation 2011

GMEM Operations

 Two types of loads:
 Caching

- Default mode

- Attempts to hit in L1, then L2, then GMEM

- Load granularity is 128-byte line

 Non-caching

- Compile with –Xptxas –dlcm=cg option to nvcc

- Attempts to hit in L2, then GMEM

- Do not hit in L1, invalidate the line if it’s in L1 already

- Load granularity is 32-bytes

 Stores:
 Invalidate L1, write-back for L2

© NVIDIA Corporation 2011

Load Operation

 Memory operations are issued per warp (32 threads)

 Just like all other instructions

 Operation:

 Threads in a warp provide memory addresses

 Determine which lines/segments are needed

 Request the needed lines/segments

© NVIDIA Corporation 2011

Caching Load

 Warp requests 32 aligned, consecutive 4-byte words

 Addresses fall within 1 cache-line

 Warp needs 128 bytes

 128 bytes move across the bus on a miss

 Bus utilization: 100%

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

© NVIDIA Corporation 2011

Non-caching Load

 Warp requests 32 aligned, consecutive 4-byte words

 Addresses fall within 4 segments

 Warp needs 128 bytes

 128 bytes move across the bus on a miss

 Bus utilization: 100%

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

© NVIDIA Corporation 2011

Caching Load

...

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

addresses from a warp

0

 Warp requests 32 aligned, permuted 4-byte words

 Addresses fall within 1 cache-line

 Warp needs 128 bytes

 128 bytes move across the bus on a miss

 Bus utilization: 100%

© NVIDIA Corporation 2011

Non-caching Load

...

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

addresses from a warp

0

 Warp requests 32 aligned, permuted 4-byte words

 Addresses fall within 4 segments

 Warp needs 128 bytes

 128 bytes move across the bus on a miss

 Bus utilization: 100%

© NVIDIA Corporation 2011

Caching Load

96 192128 160 224 288256

...
addresses from a warp

32 640 352320 384 448416
Memory addresses

 Warp requests 32 misaligned, consecutive 4-byte words

 Addresses fall within 2 cache-lines

 Warp needs 128 bytes

 256 bytes move across the bus on misses

 Bus utilization: 50%

© NVIDIA Corporation 2011

Non-caching Load

96 192128 160 224 288256

...
addresses from a warp

32 640 352320 384 448416
Memory addresses

 Warp requests 32 misaligned, consecutive 4-byte words

 Addresses fall within at most 5 segments

 Warp needs 128 bytes

 160 bytes move across the bus on misses

 Bus utilization: at least 80%

- Some misaligned patterns will fall within 4 segments, so 100% utilization

© NVIDIA Corporation 2011

Caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

 All threads in a warp request the same 4-byte word

 Addresses fall within a single cache-line

 Warp needs 4 bytes

 128 bytes move across the bus on a miss

 Bus utilization: 3.125%

© NVIDIA Corporation 2011

Non-caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

 All threads in a warp request the same 4-byte word

 Addresses fall within a single segment

 Warp needs 4 bytes

 32 bytes move across the bus on a miss

 Bus utilization: 12.5%

© NVIDIA Corporation 2011

Caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

 Warp requests 32 scattered 4-byte words

 Addresses fall within N cache-lines

 Warp needs 128 bytes

 N*128 bytes move across the bus on a miss

 Bus utilization: 128 / (N*128)

© NVIDIA Corporation 2011

Non-caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

 Warp requests 32 scattered 4-byte words

 Addresses fall within N segments

 Warp needs 128 bytes

 N*32 bytes move across the bus on a miss

 Bus utilization: 128 / (N*32)

© NVIDIA Corporation 2011

Impact of Address Alignment

 Warps should access aligned regions for maximum memory throughput
 L1 can help for misaligned loads if several warps are accessing a contiguous region

 ECC further significantly reduces misaligned store throughput

Experiment:

– Copy 16MB of floats

– 256 threads/block

Greatest throughput
drop:

– CA loads: 15%

– CG loads: 32%

© NVIDIA Corporation 2011

GMEM Optimization Guidelines

 Strive for perfect coalescing

 Align starting address (may require padding)

 A warp should access within a contiguous region

 Have enough concurrent accesses to saturate the bus

 Process several elements per thread

- Multiple loads get pipelined

- Indexing calculations can often be reused

 Launch enough threads to maximize throughput

- Latency is hidden by switching threads (warps)

 Try L1 and caching configurations to see which one works best

 Caching vs non-caching loads (compiler option)

 16KB vs 48KB L1 (CUDA call)

© NVIDIA Corporation 2011

Shared Memory

© NVIDIA Corporation 2011

Shared Memory

 Uses:
 Inter-thread communication within a block

 Cache data to reduce redundant global memory accesses

 Use it to improve global memory access patterns

 Organization:
 32 banks, 4-byte wide banks

 Successive 4-byte words belong to different banks

 Performance:
 4 bytes per bank per 2 clocks per multiprocessor

 smem accesses are issued per 32 threads (warp)

 serialization: if n threads of 32 access different 4-byte words in the same
bank, n accesses are executed serially

 multicast: n threads access the same word in one fetch
- Could be different bytes within the same word

© NVIDIA Corporation 2011

Bank Addressing Examples

 No Bank Conflicts  No Bank Conflicts

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© NVIDIA Corporation 2011

Bank Addressing Examples

 2-way Bank Conflicts  8-way Bank Conflicts

Thread 31
Thread 30
Thread 29
Thread 28

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 31

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

© NVIDIA Corporation 2011

Shared Memory: Avoiding Bank Conflicts

 32x32 SMEM array

 Warp accesses a column:

 32-way bank conflicts (threads in a warp access the same bank)

31

210

31210

31210

warps:

0 1 2 31

Bank 0

Bank 1

…

Bank 31
20 1

31

© NVIDIA Corporation 2011

Shared Memory: Avoiding Bank Conflicts

 Add a column for padding:

 32x33 SMEM array

 Warp accesses a column:

 32 different banks, no bank conflicts

31210

31210

31210

warps:

0 1 2 31 padding

Bank 0

Bank 1

…

Bank 31
3120 1

© NVIDIA Corporation 2011

Additional “memories”

 Texture and constant

 Read-only

 Data resides in global memory

 Read through different caches

© NVIDIA Corporation 2011

Texture

 Separate cache

 Dedicated texture cache hardware provides:

 Out-of-bounds index handling

- clamp or wrap-around

 Optional interpolation

- Think: using fp indices for arrays

- Linear, bilinear, trilinear

- Interpolation weights are 9-bit

 Optional format conversion

- {char, short, int} -> float

 All of these are “free”

© NVIDIA Corporation 2011

Instruction Throughput / Control Flow

© NVIDIA Corporation 2011

Runtime Math Library and Intrinsics

 Two types of runtime math library functions
 __func(): many map directly to hardware ISA

- Fast but lower accuracy (see CUDA Programming Guide for full details)

- Examples: __sinf(x), __expf(x), __powf(x, y)

 func(): compile to multiple instructions
- Slower but higher accuracy (5 ulp or less)

- Examples: sin(x), exp(x), pow(x, y)

 A number of additional intrinsics:
 __sincosf(), __frcp_rz(), ...

 Explicit IEEE rounding modes (rz,rn,ru,rd)

© NVIDIA Corporation 2011

Control Flow

 Instructions are issued per 32 threads (warp)

 Divergent branches:
 Threads within a single warp take different paths

- if-else, ...

 Different execution paths within a warp are serialized

 Different warps can execute different code with no impact on
performance

 Avoid diverging within a warp
 Example with divergence:

- if (threadIdx.x > 2) {...} else {...}

- Branch granularity < warp size

 Example without divergence:
- if (threadIdx.x / WARP_SIZE > 2) {...} else {...}

- Branch granularity is a whole multiple of warp size

© NVIDIA Corporation 2011

CPU-GPU Interaction

© NVIDIA Corporation 2011

Pinned (non-pageable) memory

 Pinned memory enables:

 faster PCIe copies

 memcopies asynchronous with CPU

 memcopies asynchronous with GPU

 Usage

 cudaHostAlloc / cudaFreeHost

- instead of malloc / free

 cudaHostRegister / cudaHostUnregister

- pin regular memory after allocation

 Implication:
 pinned memory is essentially removed from host virtual memory

© NVIDIA Corporation 2011

Streams and Async API

 Default API:
 Kernel launches are asynchronous with CPU

 Memcopies (D2H, H2D) block CPU thread

 CUDA calls are serialized by the driver

 Streams and async functions provide:
 Memcopies (D2H, H2D) asynchronous with CPU

 Ability to concurrently execute a kernel and a memcopy

 Stream = sequence of operations that execute in issue-order
on GPU
 Operations from different streams may be interleaved

 A kernel and memcopy from different streams can be overlapped

© NVIDIA Corporation 2011

Overlap kernel and memory copy

 Requirements:

 D2H or H2D memcopy from pinned memory

 Kernel and memcopy in different, non-0 streams

 Code:

cudaStream_t stream1, stream2;

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);

kernel<<<grid, block, 0, stream2>>>(…); potentially

overlapped

© NVIDIA Corporation 2011

Call Sequencing for Optimal Overlap

 CUDA calls are dispatched to the hw in the sequence they were issued

 Fermi can concurrently execute:
 Up to 16 kernels

 Up to 2 memcopies, as long as they are in different directions (D2H and H2D)

 A call is dispatched if both are true:
 Resources are available

 Preceding calls in the same stream have completed

 Scheduling:
 Kernels are executed in the order in which they were issued

 Threadblocks for a given kernel are scheduled if all threadblocks for preceding kernels
have been scheduled and there still are SM resources available

 Note that if a call blocks, it blocks all other calls of the same type behind it,
even in other streams
 Type is one of { kernel, memcopy}

© NVIDIA Corporation 2011

Stream Examples (current HW)

K1,M1,K2,M2: K1

M1

K2

M2

K1,K2,M1,M2: K1

M1

K2

M2

K1,M1,M2: K1

M1 M2

K1,M2,M1: K1

M1M2

K1,M2,M2: K1

M2M2

Time

K:

kernel

M:

memcopy

Integer: stread ID

© NVIDIA Corporation 2011

More on Dual Copy

 Fermi is capable of duplex communication with the host

 PCIe bus is duplex

 The two memcopies must be in different streams, different directions

 Not all current host systems can saturate duplex PCIe

bandwidth:

 Likely issues with IOH chips

 If this is important to you, test your host system

© NVIDIA Corporation 2011

Duplex Copy: Experimental Results

CPU-0

IOH

X58

DRAM

GPU-0

CPU-0

IOH

D36

DRAM

GPU-0

CPU-0

DRAM

10.8 GB/s 7.5 GB/s

QPI, 6.4 GT/s

25.6 GB/s

3xDDR3, 1066 MHz

25.8 GB/s

PCIe, x16

16 GB/s

© NVIDIA Corporation 2011

Duplex Copy: Experimental Results

CPU-0

IOH

X58

DRAM

GPU-0

CPU-0

IOH

D36

DRAM

GPU-0

CPU-1

DRAM

10.8 GB/s 11 GB/s

QPI, 6.4 GT/s

25.6 GB/s

3xDDR3, 1066 MHz

25.8 GB/s

PCIe, x16

16 GB/s

© NVIDIA Corporation 2011

GPUDirect v2.0: Peer-to-Peer Communication

Direct Transfers b/w GPUs

GPU1

GPU1

Memory

GPU2

GPU2

Memory

PCI-e

CPU

Chip

set

System

Memory

© NVIDIA Corporation 2011

Unified Virtual Addressing
Easier to Program with Single Address Space

No UVA: Multiple Memory Spaces UVA : Single Address Space

System

Memory

CPU GPU0

GPU0

Memory

GPU1

GPU1

Memory

System

Memory

CPU GPU0

GPU0

Memory

GPU1

GPU1

Memory

PCI-e PCI-e

0x0000

0xFFFF

0x0000

0xFFFF

0x0000

0xFFFF

0x0000

0xFFFF

© NVIDIA Corporation 2011

Summary

 Kernel Launch Configuration:

 Launch enough threads per SM to hide latency

 Launch enough threadblocks to load the GPU

 Global memory:
 Maximize throughput (GPU has lots of bandwidth, use it effectively)

 Use shared memory when applicable (over 1 TB/s bandwidth)

 GPU-CPU interaction:
 Minimize CPU/GPU idling, maximize PCIe throughput

 Use analysis/profiling when optimizing:

 “Analysis-driven Optimization” part of the tutorial following

© NVIDIA Corporation 2011

Questions?

