

Technical Brief

Microsoft DirectX 10:
The Next-Generation Graphics API

November 2006
TB-02820-001_v01

 DirectX 10: The Next-Generation Graphics API

ii TB-02820-001_v01
 November 4, 2006

TB-02820-001_v01 1
November 4, 2006

Microsoft DirectX 10:
The Next-Generation Graphics API

Introduction

Microsoft’s release of DirectX 10 represents the most significant step forward in 3D
graphics API since the birth of programmable shaders. Completely built from the
ground up, DirectX 10 features a highly optimized runtime, powerful geometry
shaders, texture arrays, and numerous other features that unlock a whole new world
of graphical effects.

DirectX has evolved steadily in the past decade to become the API of choice for
game development on the Microsoft Windows platform. Each generation of
DirectX brought support for new hardware features, allowing game developers to
innovate at an amazing pace. NVIDIA has led the 3D graphics industry by being the
first to launch new graphics processors to provide full support for each generation
of DirectX. We are proud to continue this tradition for DirectX 10.

NVIDIA was the first company to introduce support for DirectX 7’s hardware-
accelerated transform and lighting engine with its award-winning NVIDIA®
GeForce® 256 graphics processor. When DirectX 8 introduced programmable
shaders in 2000, NVIDIA led the way with the world’s first programmable GPU,
the GeForce 3. The GeForce FX, introduced in 2003, was the first GPU to support
32-bit floating-point colors, a key feature of DirectX 9. When Shader Model 3.0 was
announced, NVIDIA once again led the way with its popular GeForce 6 and
GeForce 7 series of graphics processors.

DirectX 10 is the first complete redesign of DirectX since its birth. To carry on the
tradition of serving as the premier DirectX platform, we designed a new GPU
architecture from scratch specifically for DirectX 10. This new architecture, which
we refer to as the GeForce 8800 series architecture, is the result of over three years
of intensive research and development with intimate collaboration from Microsoft.
The first product based on this new architecture is the GeForce 8800 GTX—the
world’s first DirectX 10–compliant GPU.

 DirectX 10: The Next-Generation Graphics API

2 TB-02820-001_v01
 November 4, 2006

The GeForce 8800 GTX is a GPU of many firsts. It is simultaneously the world’s
largest, most complex, and most powerful GPU. With a massive array of 128-stream
processors operating at 1.35 GHz, the GeForce 8800 GTX has no peer in
performance. Built with image quality as well as speed in mind, its new 16×
antialiasing, 128-bit HDR rendering and angle-independent anisotropic filtering
engines produce pixels that rival Hollywood films. This paper will discuss the new
features behind DirectX 10 and how the GeForce 8800 architecture will bring them
to life.

How This Paper Is Organized
This paper is organized into the following six sections.

� A New Architecture Designed for High Performance
This section discusses the problem of high CPU overhead for graphics APIs
and how DirectX 10 addresses this problem.

� Shader Model 4.0

This section discusses how the new unified shading core and vastly improved
resources affect graphics.

� Geometry Shader + Stream Output
This section explores the geometry shader and the stream output function.

� HLSL 10
This section discusses the new features behind the latest version of the DirectX
10’s high-level shader language (HLSL), such as constant buffers and views.

� Other Improvements

This section reviews other improvements in the API that are not part of any of
the prior sections, but nevertheless have significant value for next-generation
titles.

� Next-Generation Effects
This section takes a glimpse at the future by showcasing three next-generation
effects powered by DirectX 10.

 DirectX 10: The Next-Generations Graphics API

TB-02820-001_v01 3
November 4, 2006

A New Architecture Designed

for High Performance

Overcoming High API Overhead
DirectX has enjoyed great popularity with developers thanks to its rich features and
ease of use. However, the API has always suffered one major problem—a high CPU
overhead.

Before graphics-programming APIs were introduced, 3D applications issued their
commands directly to the graphics hardware. While this was very fast, the
application had to hand out different commands to different hardware, making
development difficult and error prone. As the range of graphics hardware grew, this
soon became infeasible.

Graphics APIs like DirectX and OpenGL act as a middle layer between the
application and the graphics hardware. Using this model, applications write one set
of code and the API does the job of translating this code to instructions that can be
understood by the underlying hardware. This greatly eases the development process
by allowing developers to concentrate on making great games instead of writing
code to talk to a vast assortment of hardware.

The problem with this model is that every time DirectX receives a command from
the application, it has to process the command before knowing how to issue it to
the hardware. Since this processing is done on the CPU, it means all 3D commands
now carry a CPU overhead. This overhead causes two problems for 3D graphics: it
limits the number of objects that can be rendered and it limits the number of unique
effects that can be applied to a scene.

In the first case, since each draw call carries a fixed API overhead, only a certain
number of draw calls can be used before the system is completely CPU bound. This
imposes a limit on the number of objects that can be drawn. To combat this
problem, developers use a technique called batching, where multiple objects are
drawn as a group. But when objects differ in material properties, batching cannot be
applied.

A high API overhead not only limits rendering performance, it also limits the visual
richness of the application. State change commands (as well as draw calls) produce
significant API overhead. This includes changing textures, shaders, vertex formats,
and blending modes. These state change operations are crucial in providing unique
appearances to the world; without them, every object’s surface would look the same.
However, since state change commands are accessed via the API, they carry a CPU
overhead. State changes also occur much more often than draw calls because
multiple effects may be applied to a single object. Due to the high cost of state
changes, developers avoid using a large variety of textures and unique materials. The
result is that games are not as visually rich as they should be.

 DirectX 10: The Next-Generation Graphics API

4 TB-02820-001_v01
 November 4, 2006

DirectX 10—A New ‘Ground Up’ Architecture
One of the chief objectives of DirectX 10 is to significantly reduce the CPU
overhead of rendering. DirectX 10 attacks the overhead problem in three ways.
First, the cost of draw calls and state changes is reduced by completely redesigning
the performance-critical parts of the core API. Second, new features are introduced
to reduce CPU dependence. Third, new features are added to allow more work to be
done in one command.

New Runtime
DirectX 10 introduces a new runtime that significantly reduces the cost of draw calls
and state changes. The new runtime has been redesigned to map much closer to
graphics hardware, allowing it to perform far more efficiently then before. Legacy
fixed-function commands from previous versions of DirectX have been removed.
This reduces the number of states that need to be tracked, providing a cleaner and
lighter runtime. To support this new runtime, we designed the GeForce 8800
architecture with all these changes in mind. Our new driver, supporting the new
Windows Vista Driver Model, is tuned for optimal performance on DirectX 10.

A key runtime change that greatly enhances performance is the treatment of
validation. Validation is a process that occurs before any draw call is executed. The
validation process ensures that commands and data sent by the application are
correctly formatted and will not cause problems for the graphics card. Validation
also helps maintain data integrity, but unfortunately introduces a significant
overhead.

Table 1. DirectX 9 vs. DirectX 10 Validation. DirectX 9 validates
resources for every use. DirectX 10 only needs to validate
resource once during creation, greatly reducing validation
overhead.

DirectX 9 Validation DirectX 10 Validation

Application starts
Create Resource
Game loop (executed millions of times)

• Validate Resource

• Use Resource

• Show frame

Loop End

App ends

Application starts
Create Resource

Validate Resource (executed once)

Game loop (executed millions of times)

• Use Resource

• Show frame

Loop End

App ends

In DirectX 10, objects are validated when they are created rather than when they are
used. Since objects are only crated once, validation only occurs once. Compared to
DirectX 9 where objects are validated once for each use, this represents a huge
saving.

 DirectX 10: The Next-Generations Graphics API

TB-02820-001_v01 5
November 4, 2006

Less CPU Intervention
DirectX 10 introduces several new features that greatly reduce the amount of CPU
intervention. These include texture arrays, predicated draw, and stream out.

Traditionally, switching between multiple textures incurred a high state-change cost.
As a workaround, artists stitched together several small textures into a single large
texture called a texture atlas, allowing them to use multiple textures without paying
the cost of creating and managing multiple textures. However, since the largest
texture size permitted in DirectX 9 is 4048 × 4048, this approach was fairly limited.

DirectX 10 introduces a new construct called texture arrays, which allow up to 512
textures to be stored in an array structure. Also included are new instructions that
allow a shader program to dynamically index into the texture array. Since these
instructions are handled by the GPU, the amount of CPU overhead associated with
managing multiple textures is greatly reduced.

Predicated draw is another feature that no longer requires CPU intervention. In typical
3D scenes, many objects are often entirely overlapped by other objects. In such
cases, drawing the occluded object takes up rendering resources, but has no effect
on the final image. Advanced GPUs use various hardware-based culling methods to
detect these conditions to avoid processing pixels that will never be visible. But
nevertheless, some redundant overdraw still occurs. To prevent this waste,
developers use a technique called predicated draw, where complex objects are first
drawn using a simple box approximation. If drawing the box has no effect on the
final image, the complex object is not drawn at all. This is also known as an occlusion
query. In previous versions of DirectX, solving the occlusion query required using
both the CPU and the GPU. With DirectX 10, this process is done entirely on the
GPU, eliminating all CPU intervention.

Lastly, DirectX 10 introduces a new function called stream out that allows the vertex
or geometry shader to output their results directly into graphics memory. This is a
significant improvement compared to previous versions of DirectX, where results
must pass through to the pixel shader before they can exit the pipeline. With stream
output, results can be iteratively processed on the GPU with no CPU intervention.

Do More with Each Command
State management has always been a costly affair with DirectX 9. The task of
repeatedly setting up textures, constants, and blending modes incurs a significant
CPU overhead. Typically, applications use these commands in rapid succession. But
because DirectX 9 does not have any way of batching these operations, their
accumulated overhead greatly limits rendering performance.

DirectX 10 introduces two new constructs—state objects and constant buffers—
permitting common operations to be performed in batch mode, greatly reducing the
cost of state management.

 DirectX 10: The Next-Generation Graphics API

6 TB-02820-001_v01
 November 4, 2006

State Objects
Prior to DirectX 10, states were managed in a very fine-grained manner. States
define the behavior of various parts of the graphics pipeline. For example, in the
vertex shader, the vertex buffer layout state defines the format of input vertices. In
the output merger, the blend state determines which blend function is applied to the
new frame. In general, states help define various vertex and texture formats and the
behavior of fixed-function parts of the pipeline. In DirectX 9’s state management
model, the programmer manages state at low level—often many state changes were
required to reconfigure the pipeline. To make state changes more efficient, DirectX
10 implements a new, higher-level state management model using state objects.

The huge range of states in DirectX 9 is consolidated into five state objects in
DirectX 10: InputLayout (vertex buffer layout), Sampler, Rasterizer, DepthStencil,
and Blend. These state objects capture the essential properties of various pipeline
stages. Leveraging them, state changes that used to require multiple commands can
be performed using only one call, greatly reducing the state change overhead.

Constant Buffers
Another major feature being introduced is the use of constant buffers. Constants are
predefined values used as parameters in all shader programs. For example, the
number of lights in a scene along with their intensity, color, and position are all
defined by constants. In a game, constants often require updating to reflect world
changes. Because of the large number of constants and their frequency of update,
constant updates produce a significant API overhead.

Constant buffers allow up to 4096 constants to be stored in a buffer that can be
updated in one function call. This batch mode of updating greatly alleviates the
overhead cost of updating a large number of constants.

Image courtesy of Microsoft’s DirectX 10 SDK

Figure 1. DirectX 10’s drastically reduced CPU overhead makes it
possible to render a huge number of objects with
incredible detail.

 DirectX 10: The Next-Generations Graphics API

TB-02820-001_v01 7
November 4, 2006

In Summary: Faster, Lighter, Smarter
To sum up the improvements outlined in this section: DirectX 10 has been rebuilt
from the ground up to offer the highest performance by mapping closer to the
hardware and leveraging creation time validation. It requires less CPU
intervention—thanks to new features like texture arrays, predicated draw, and
stream output. With state objects and constant buffers, the task of managing state
and constants is more efficient and streamlined. Together, these contribute to a
major reduction in the overhead required to render using the DirectX API.

DirectX 9 vs. DirectX 10 CPU Overhead

0

1000

2000

3000

4000

5000

6000

7000

Draw Bind VS Shader Set Constant Set Blend

Function

C
P

U
 C

y
c
le

s

DX9

DX10

Figure 2. DirectX 9 vs. DirectX 10 CPU overhead

 DirectX 10: The Next-Generation Graphics API

8 TB-02820-001_v01
 November 4, 2006

Shader Model 4.0

DirectX 10 introduces Shader Model 4.0, which provides several key innovations:

� A new programmable stage called the geometry shader, which allows per-primitive
manipulation

� A unified shading architecture that uses a unified instruction set and common
resources across vertex, geometry, and pixel shaders

� Shader resources that are vastly approved across the board

Geometry shaders represent a major step forward in the programmable graphics
pipeline, allowing for the first time the generation and destruction of geometry data
on the GPU. Coupled with the new stream out function, algorithms that were once
out of reach can now be mapped to the GPU. Geometry shaders are discussed in
the next section of this paper.

Unified Shading Architecture
In prior versions of DirectX, pixel shaders lagged behind vertex shaders in constant
registers, available instructions, and instruction limits. As such, programmers had to
learn how to use vertex and pixel shaders as separate entities.

Shader Model 4.0 differs from prior versions by providing a unified instruction set
with the same number of registers (temporary and constant) and inputs across the
programmable pipeline*. Games developed under DirectX 10 do not need to spend
time working around stage-specific limitations; all shaders are able to tap into the
entire resources of the GPU.

More Than a Hundred Times the Resources of DirectX 9
Shader Model 4.0 provides an astounding increase in resources for shader programs.
In previous versions of DirectX, developers were forced to carefully manage scarce
register resources. DirectX 10 provides over two orders of magnitude increases in
register resources: temporary registers are up from 32 to 4096, and constant registers
are up from 256 to 65,536 (sixteen constant buffers of 4096 registers). Needless to
say, the GeForce 8800 architecture provides all these DirectX 10 resources.

Table 2. DirectX 9 vs. DirectX 10 Resources

Resources DirectX 9 DirectX 10

Temporary registers 32 4096

Constant registers 256 16 × 4096

Textures 16 128

Render targets 4 8

Maximum texture size 4048 × 4048 8096 × 8096

 DirectX 10: The Next-Generations Graphics API

TB-02820-001_v01 9
November 4, 2006

More Textures
Shader Model 4.0 brings support for texture arrays, liberating artists from the
tedious work of creating texture atlases. Prior to Shader Model 4.0, the overhead
cost associated with changing textures meant that it was infeasible to use more than
a few unique textures per shader. To help combat this problem, artists packed small
individual textures into a large texture called a texture atlas. At runtime, the shader
performed an additional address calculation to find the right texture within the
texture atlas.

Texture atlases have two major issues. First, the boundaries between textures within
a texture atlas receive incorrect filtering. Second, since the largest texture size is
4096 × 4096 in DirectX 9, texture atlases can only hold a modest collection of small
textures or a few large textures.

Texture arrays solve both problems by formally allowing textures to be stored in an
array format. Each texture array can store up to 512 equally sized textures. The
maximum texture resolution has also been extended to 8192 × 8192. To facilitate
their use, the maximum number of textures that can be used by a shader has been
increased to 128, an eight-fold increase from DirectX 9. Together, these features
represent an unprecedented leap in texturing power.

Figure 3. Using texture arrays, much greater detail can be

applied to objects.

 DirectX 10: The Next-Generation Graphics API

10 TB-02820-001_v01
 November 4, 2006

More Render Targets
Multiple render targets, a popular feature of DirectX 9, allow a single pass of the
pixel shader to output four unique rendering results, effectively rendering four
interpretations of the scene in one pass. DirectX 10 takes this further by supporting
eight render targets. This greatly increases the complexity of shaders that can be
used. Deferred rendering and other image space algorithms will benefit immensely.

Two New HDR Formats
High dynamic-range rendering became popular thanks to the support of floating-
point color formats in DirectX 9. Unfortunately, floating-point representation takes
up more space than integer representation, limiting performance and accessibility.
For example, the popular FP16 format takes up 16 bits per color component—
twice the storage of standard rendering using an 8-bit integer.

Image courtesy of Futuremark

Figure 4. High dynamic-range rendering

 DirectX 10: The Next-Generations Graphics API

TB-02820-001_v01 11
November 4, 2006

DirectX 10 introduces two new HDR formats that offer the same dynamic range as
FP16 but at half the storage. The first format, R11G11B10, is optimized to be used
as a floating-point render target. It uses 11 bits for red and green, and 10 bits for
blue. The second floating-point format, RGBE, is designed for floating-point
textures. It uses a 5-bit shared exponent across all colors with 9 bits of mantissas for
each component. These new formats allow high dynamic-range rendering without
the high storage and bandwidth costs.

For the highest level of precision, DirectX 10 supports 32 bits of data per
component. The GeForce 8800 GTX fully supports this feature, which can be used
from high-precision rendering to scientific computing applications.

Summary
The huge increase in register space, texturing ability, and new rendering options will
allow developers to completely rethink their graphics engines, and paves the way for
creating infinitely more detailed worlds.

 DirectX 10: The Next-Generation Graphics API

12 TB-02820-001_v01
 November 4, 2006

Geometry Shader + Stream

Output

Up until now, graphics hardware only had the ability to manipulate existing data on
the GPU. Both the vertex and the pixel shader apply their program to data that
already exists in memory. This model has been very successful in performing
complex skinning on existing meshes, as well as doing accurate per-pixel
calculations on existing pixels. However, this model does not permit the generation
of new data on the graphics processor (instancing is an exceptions). When objects are
created dynamically in a game (such as the appearance of new weapons or power-
ups), it is done by invoking the CPU. Since most games are already CPU limited,
little opportunity exists for generating large amounts of new data dynamically on the
CPU during gameplay.

The geometry shader, introduced in Shader Model 4.0, will for the first time allow
data to be generated on the graphics processor. This revolutionizes the role of the
GPU in the system from being a processor that can only process existing data to
one that can generate and manipulate data at incredible speeds. A whole new
spectrum of algorithms—out of reach on previous graphics systems—is now
possible. Using DirectX 10 and the GeForce 8800 GTX, popular algorithms such as
stencil shadows, dynamic cube maps, and displacement mapping which have all
relied either on the CPU or multipass rendering can now be performed with much
greater efficiency.

Adds the geometry shader and stream output, allowing for iterative calculations on the GPU
with no CPU intervention

Figure 5. The DirectX 10 pipeline

 DirectX 10: The Next-Generations Graphics API

TB-02820-001_v01 13
November 4, 2006

The geometry shader sits in the middle of the DirectX 10 graphics pipeline between
the vertex shader and the rasterizer. It takes vertices transformed by the vertex
shader as input, and for each vertex the geometry shader emits up to 1024 vertices
as output. The ability to generate huge amounts of new data is also known as data
amplification. Likewise the geometry shader can remove data on the GPU by
outputting fewer vertexes than it received, thus doing data minimization. Together
these two features make the geometry shader exceptionally powerful in how it can
influence the flow of data within the GPU.

Displacement Mapping with Tessellation
The geometry shader will finally allow generalized displacement mapping on the
GPU. Displacement mapping is a popular technique used in offline rendering
systems that allows very complex models to be rendered using a simple model and
special textures called height maps. A height map is a grayscale texture that expresses
the height of vertices at each point in the model. During rendering, the low-polygon
model is tessellated with additional polygons and, based on information encoded in
the height map, the polygons are extruded to give the representation of the full
detailed model.

Since no part of the GPU could generate additional data in DirectX 9, the low-
polygon model could not be tessellated. Hence only a limited implementation of
displacement mapping was possible. Now with DirectX 10 and the power of the
GeForce 8800 GTX, thousands of additional vertices can be generated on the fly,
allowing true displacement mapping with tessellation to be rendered in real time.

New Algorithms Based on Adjacency
The geometry shader can take in three types of primitives: vertices, lines, and
triangles. Likewise it can output any of these primitives, though it cannot output
more than one type per shader. In the case of lines and triangles, the geometry
shader also has the ability to access adjacency information. Using adjacent vertices
of lines and triangles allows many powerful algorithms to be implemented. For
example, adjacency information can be used to calculate silhouette edges for objects
used for cartoon rendering and realistic fur rendering. See Figure 7 on the following
page.

 DirectX 10: The Next-Generation Graphics API

14 TB-02820-001_v01
 November 4, 2006

Figure 6. Nonphotorealistic rendering (NPR) using the

geometry shader

Stream Output
Prior to DirectX 10, geometry needed to be rasterized and sent to the pixel shader
before any results could be written to memory. DirectX 10 introduces a new feature
called stream output, which allows data to be passed directly from either the vertex or
the geometry shader straight into frame buffer memory. The output can then be fed
back to the pipeline to allow iterative processing. When the geometry shader is used
in conjunction with stream output, the GPU can process not only new graphical
algorithms, but be far more effective with physics and general computations as well.

With the ability to generate, destroy, and stream data, a fully featured particle system
can now be run exclusively on the GPU. Particles begin their life in the geometry
shader and are amplified by the generation of additional points. The new particles
are streamed out to memory and fed back to the vertex shader for animation. After
a set period of time, their brightness starts to fade and eventually the geometry
shader deletes them from the system.

 DirectX 10: The Next-Generations Graphics API

TB-02820-001_v01 15
November 4, 2006

HLSL 10

DirectX 10 brings several key additions to the popular high-level shader language
(HLSL) that was first released with DirectX 9. These include constant buffers for
fast constant updates, views for binding resources to the pipeline, integer and
bitwise instructions for more generalized computation, and switch statements for
flexible shader-based instancing.

Constant Buffers
Shader programs require the use of constants to define various parameters such as
the position and color of lights, the position of the camera, view and projection
matrices, and material parameters like specularity. During rendering, these constants
often require updating. When hundreds of constants are in use, updating them
creates significant CPU overhead. Constant buffers are a new DirectX 10 construct
that groups constants into buffers and updates them in unison based on the
frequency of use.

DirectX 10 supports a total of 16 constant buffers per shader program, each capable
of holding 4096 constants. In contrast, DirectX 9 supports only 256 constants per
shader program.

Figure 7. Comparing DirectX 9 with DirectX 10

Not only does DirectX 10 offer many more constants, the speed with which they
can be updated is dramatically faster than DirectX 9. When grouped in a constant
buffer, constants can be updated using one call, rather than individually.

Because various constants are updated at different intervals, organizing them by
frequency of use is much more efficient. For example, the camera and view
projection matrix will change every frame, whereas material parameters such as
texture may change for every primitive. To optimize for this pattern of usage,
constant buffers are designed to be updated depending on the frequency of use—
per-primitive constant buffers update for every new primitive, while per-frame
constant buffers update per frame. This greatly minimizes the overhead cost of
updating constants, allowing shaders to run more efficiently than before in
DirectX 9.

In DirectX 9 (left), only 256
registers are available.
DirectX 10 (right) offers 16
constant buffers of 4096
constants each

 DirectX 10: The Next-Generation Graphics API

16 TB-02820-001_v01
 November 4, 2006

Views
Shader resources are strongly typed in DirectX 9. For example, a vertex buffer used
in the vertex shader cannot be reinterpreted as a texture in the pixel shader. This
formed a strong bond between specific resources and specific stages in the pipeline,
limiting the scope for resource sharing across different stages of the pipeline.

DirectX 10 removes the notion of strongly typed resources. When a resource is
created, it is simply treated as a bit field in memory. To use these untyped bit fields
in memory, a view construct is used. The view of a resource is an interpretation of
that resource into a particular format. Using views, the same resource can be read in
many different ways. DirectX 10 supports two views of the same resource at any
one time.

Using multiple views, it is possible to reuse the same resource for different purposes
in different parts of the pipeline. For example, one could use the pixel shader to
render new geometric data into a texture. In a subsequent pass, the vertex shader
can use a view to interpret the texture as a vertex buffer and use the rendering result
as geometry Views enable a more flexible treatment of resources and allow
developers to create more interesting effects by reusing resources in the pipeline.

Integer and Bitwise Instructions
The new high-level shader language adds support for integer and bitwise
instructions. The ability to work natively with integer instructions makes many
algorithms much easier to implement on the GPU. Developers can finally compute
exact solutions using integers rather than converting from floating-point. Array
indices can now be easily calculated. When used with the unfiltered load instruction,
integer calculations can now be performed on large arrays of numbers, enhancing
the graphics processor’s general purpose computing ability.

Switch Statement
HLSL 10 includes support for the commonly used switch statement in
programming. This makes programming easier for shaders that execute a large
number of paths. One use would be über-shaders—large shader programs that
encapsulate many smaller shader programs. An über-shader using the switch
statement can allow different effects to be applied on a per-primitive basis by
switching based on the material ID. Entire armies can now be rendered with unique
effects on each character.

 DirectX 10: The Next-Generations Graphics API

TB-02820-001_v01 17
November 4, 2006

Other Improvements

In addition to the major changes in the runtime—a new shader model and HLSL
10—DirectX 10 includes many less notable but important changes that will benefit
next-generation titles.

Alpha to Coverage
Games often use polygons with transparent portions (alpha textures) to represent
complex geometry such as leaves, chain-linked fences, and railings. Unfortunately
when alpha textures are rendered, the intersection between the opaque and
transparent portions show heavy aliasing. Alpha blending can solve this problem,
but requires that polygons be sorted and rendered in back-to-front order. This is
currently infeasible to do without a large performance penalty.

DirectX 10 includes support for a technique called alpha to coverage. Using this
scheme, partially transparent alpha values are resolved using multisample
antialiasing. This gives the transition a smooth, antialiased edge without the
performance penalty of alpha blending. Outdoor games with heavy use of foliage
will benefit greatly from this feature.

Figure 8. Using alpha to coverage, leaf edges in alpha
textures receive the smoothing effects of

antialiasing.

 DirectX 10: The Next-Generation Graphics API

18 TB-02820-001_v01
 November 4, 2006

Shadow Map Filtering
Shadow maps have become the most popular algorithm for rendering realistic
shadows. However, shadow maps have always suffered heavy aliasing due to their
limited resolution. To alleviate this, DirectX 10 adds official support for shadow
map filtering. With shadow map filtering, arbitrary samples of the shadow map can
be read and blended to create soft, realistic shadows.

Access to Multisampling Subsamples
The current method of resolving multisample antialiasing (MSAA) is done at a very
late stage in the graphics pipeline called scan out. At this stage, the subsamples cannot
be recorded in memory for subsequent use. This limitation means MSAA cannot be
used in deferred shading graphics engines.

In DirectX 10 it is possible to bind an MSAA render target as a texture, where each
subsample can be accessed individually. This gives the programmer much better
control over how subsamples are used. Deferred rendering can now benefit from
MSAA. Custom resolves can also be computed.

 DirectX 10: The Next-Generations Graphics API

TB-02820-001_v01 19
November 4, 2006

Next-Generation Effects

DirectX 10 offers many new features for developers to create next-generation
effects. However, due to DirectX 10’s highly evolved programmability, it’s not
immediately obvious what these features will translate to visually. In fact, some of
the most compelling effects enabled by DirectX 10 are not the result of a single
feature, but the result of many features working in unison. In this section we look at
three next-generation graphics techniques in detail and show how they leverage the
new DirectX 10 pipeline.

Next-Generation Instancing
DirectX 9 introduced a feature known as instancing, where one object can have its
instance drawn in different locations and orientations by using only one draw call.
This featured was designed to lower CPU overhead for drawing large number of
objects and was popular with developers for drawing lots of objects of similar
appearance. For example, littered rocks or armies of identical soldiers could be
drawn very efficiently by using instancing. The drawback was that the instanced
objects were effectively just clones; they could not use different textures or shaders.

Figure 9. Image rendered using only a few draw calls

DirectX 10 liberates instancing from these restrictions. Instanced objects no longer
need to use the same textures thanks to texture arrays; each object can now
reference a unique texture by indexing into a texture array. Likewise, instanced
objects can use different shaders thanks to HSLS 10’s support for switch
statements. An über-shader can be written that describes a dozen materials. During
rendering, a forest of trees can all reference this über-shader but point to different
shaders within, allowing unique effects to be applied to instanced objects.

All of the objects in the scene are instanced. Even the blades of grass are uniquely generated by
the geometry shader and instanced to cover the island.

 DirectX 10: The Next-Generation Graphics API

20 TB-02820-001_v01
 November 4, 2006

Even animation can be customized thanks to the switchable vertex shaders and
constant buffers. With sixteen buffers of 4096 constants available, a huge number of
matrix palate animations can be stored and referenced by the vertex shader.

Gone are the days where instancing meant a world of clones. DirectX 10’s advanced
instancing features will allow each object to have its own personality. Be it textures,
pixel shaders, or vertex shaders, each object will breathe and live a life of its own.

Per-Pixel Displacement Mapping
Earlier on we discussed the benefits of displacement mapping by generating new
vertices in the geometry shader. Using the combined power of the geometry shader
and pixel shader, it is also possible to perform displacement mapping without
generating and displacing vertices. By not producing new geometry, this method
offers higher performance than standard displacement mapping.

Per-pixel displacement mapping works by sampling the height map with rays cast
from the camera. Based on the sampled value, the pixel shader then renders the
color value of the displaced surface in screen space.

The first step requires the geometry shader to extrude an imaginary prism for every
triangle. The height of this prism represents the maximum displacement distance.
Inside the prism, the height map encodes the displacement of the surface. During
rendering, the pixel shader fires rays into the prism and calculates the intersection
between the ray and the height map. Based on this value, the pixel is rendered.

Per-pixel displacement mapping improves upon previous screen space techniques
(parallax, relief, and offset mapping) by offering correct results at object silhouettes.
It is also very robust, working on static as well as dynamic geometry.

Image courtesy of Microsoft’s DirectX 10 SDK

Figure 10. Combined power of DirectX 10 and
GeForce 8800 GTX

Thanks to the
combined power
of DirectX 10 and
the GeForce 8800
GTX, per-pixel
displacement
mapping can be
rendered in real
time, bring this
lizard to life.

 DirectX 10: The Next-Generations Graphics API

TB-02820-001_v01 21
November 4, 2006

Procedural Growth Simulation
When we introduced programmable shaders with the GeForce 3 graphics processor,
many developers were excited about the possibility of procedurally generated
effects. Procedural effects are based on real-time calculations rather than pre-made
vertex or texture data. However, due to the inability to generate new data on the
GPU, procedural effects have largely been used for animating existing data like fire,
water, and particle effects.

Image courtesy of Niko Suni

Figure 11. Procedurally simulated coral growth

Now with DirectX 10 and the geometry shader, the world can be rendered with
life—growing, changing, and decaying. The image in Figure 12, rendered with
DirectX 10, shows the simulation of a whole ecosystem underwater. The red coral is
defined by an L-system, which is the formal grammar used to describe the growth of
plants in botany. Using the L-system as a model, the coral begins its life as a few
seed branches in the vertex shader. The geometry shader takes the initial branches
and simulates the next phase in the coral’s life based on the L-system. Older
branches grow thicker and intricate new branches are generated thanks to its ability
to introduce additional vertices into the model. The coral’s texture is given
definition and detail in the pixel shader. Physics calculations simulating the flow of
water and its effects on the leaves are also computed. As a final touch, the result is
tone-mapped to give the scene depth and richness.

 DirectX 10: The Next-Generation Graphics API

22 TB-02820-001_v01
 November 4, 2006

With procedural growth, the game world will not be forced to use static, immutable
objects. Games today cannot depict the intricate change of plants and animals in real
time due to high-CPU overhead and limited GPU programmability. With DirectX
10, both problems are given generous solutions. The next generation of titles will
depict worlds ever changing and filled with living, breathing life.

Conclusion

DirectX 10 is the most significant step forward in many years for graphics. By
being the first to fully support all the features of DirectX 10, NVIDIA has once
again proven to be the definite platform for DirectX. With powerful features like
geometry shaders, stream output, and texture arrays, it will be now possible to
render scenes of unprecedented scale, detail, and dynamism.

Together, Microsoft’s DirectX 10 and NVIDIA’s GeForce 8800 GTX represent the
ultimate graphics platform.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, and GeForce are trademarks or registered trademarks of NVIDIA Corporation in the
United States and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

© 2006 NVIDIA Corporation. All rights reserved.

